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Table IV: Top 5 words of 50 topics from Stack Exchange data set.

12 million questions from the Stack Overflow site (under Stack Exchange) to produce 50 topics.
The matrix W can be interpreted as vocabulary-topic distribution and the H as topic-document
distribution. We took the top 5 words for each of the 50 topics and present them in Table IV.
Typically a good topic generation satisfies properties such as (a) finding discriminative rather than
common words – capturing words that can provide some information; (b) finding di↵erent topics
– the similarity between di↵erent topics should be low; (c) coherence - all the words that belong
to one topic should be coherent. There are some topic quality metrics [NLGB10] that capture the
usefulness of topic generation algorithm. We can see NMF generated generally high-quality and
coherent topics. Also, each of the topics are from di↵erent domains such as databases, C/C++
programming, Java programming, and web technologies like PHP and HTML.

7. CONCLUSION
In this paper, we propose a high-performance distributed-memory parallel framework for NMF al-
gorithms that iteratively update the low rank factors in an alternating fashion. Our parallel algorithm
is designed to avoid communication overheads and scales well to over 1500 cores. The framework
is flexible, being (a) expressive enough to leverage many di↵erent NMF algorithms and (b) e�cient
for both sparse and dense matrices of sizes that span from a few hundreds to hundreds of millions.
Our open-source software implementation is available for download.

For solving data mining problems at today’s scale, parallel computation and distributed-memory
systems are becoming prerequisites. We argue in this paper that by using techniques from high-
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(b) Dense Synthetic
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(c) Sparse Real World (webbase-1M)
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(d) Dense Real World (Video)

Fig. 5: Per-iteration times with k=50, varying p (strong scaling).

each iteration. Our conclusion is that as we scale up p, this
tradeo↵ is further relaxed so that ABPP becomes more and more
advantageous for both quality and performance.

6.3.3 Scaling k
Figure 6 presents an experiment scaling up the low rank value k
from 10 to 50 with each of the four data sets. In this experiment,
for each data set and algorithm, the problem size is fixed and the
number of processors is fixed to p= 864. As in Section 6.3.2, we
report the average per-iteration times.

We highlight two observations from these experiments:
1) Naive is plagued by communication time that increases

linearly with k;
2) ABPP’s time increases more quickly with k than those of MU

or HALS;
6.3.3.1 Observation 1: We see from the synthetic data sets

(Figures 6a and 6b) that the overall time of Naive increases more
rapidly with k than any other algorithm and that the increase
in time is due mainly to communication (All-Gather). Table 3
predicts that Naive communication volume scales linearly with
k, and we see that in practice the prediction is almost perfect with
the synthetic problems. This confirms that the communication
is dominated by bandwidth costs and not latency costs (which
are constant with respect to k). We note that the communication
cost of MPI-FAUN scales like

p
k, which is why we don’t see as

dramatic an increase in communication time for MU, HALS, or
ABPP in Figure 6.

6.3.3.2 Observation 2: Focusing attention on time spent
in LUC computations, we can compare how MU, HALS, and
ABPP scale di↵erently with k. We see a more rapid increase
of LUC time for ABPP than MU or HALS; this is expected
because the LUC computations unique to ABPP require between
O(k3) and O(k4) operations (depending on the data) while the
unique LUC computations for MU and HALS are O(k2), with
all other parameters fixed. Thus, the extra per-iteration cost of
ABPP increases with k, so the advantage of ABPP of better
error reduction must also increase with k for it to remain superior
at large values of k. We also note that although the number of
operations within MM grows linearly with k, we do not observe
much increase in time from k = 10 to k = 50; this is due to the
improved e�ciency of local MM for larger values of k.

6.3.4 Varying Processor Grid

In this section we demonstrate the e↵ect of the dimensions of the
processor grid on per-iteration performance. For a fixed total num-
ber of processors p, the communication cost of Algorithm 3 varies
with the choice of pr and pc. To minimize the amount of data
communicated, the theoretical analysis suggests that the processor
grid should be chosen to make the sizes of the local data matrix as
square as possible. This implies that if m/p>n, pr= p and pc=1 is
the optimal choice (a 1D processor grid); likewise if n/p>m then
a 1D processor grid with pr = 1 and pc = p is the optimal choice.
Otherwise, a 2D processor grid minimizes communication with
pr⇡
p

mp/n and pc⇡
p

np/m (subject to integrality and pr pc= p).
Figure 7 presents a benchmark of ABPP for the Sparse

Synthetic data set for fixed values of p and k. We vary the
processor grid dimensions from both 1D grids to the 2D grid
that matches the theoretical optimum exactly. Because the sizes
of the Sparse Synthetic matrix are 172,800 ⇥ 115,200 and the
number of processors is 1536, the theoretically optimal grid is
pr =
p

mp/n= 48 and pc =
p

np/m= 32. The experimental results
confirm that this processor grid is optimal, and we see that the
time spent communicating increases as the processor grid deviates
from the optimum, with the 1D grids performing the worst.

6.3.5 Scaling up to Very Large Sparse Datasets

In this section, we test MPI-FAUN by scaling up the problem
size. While we’ve used webbase-1M in previous experiments, we
consider webbase-2001 in this section as it is the largest sparse
data in University of Florida Sparse Matrix Collection [40]. The
former dataset has about 1 million nodes and 3 million edges,

MPI-FAUN

• Distributed Communication avoiding NMF Algorithms

• https://github.com/ramkikannan/nmflibrary

• http://dx.doi.org/10.1109/TKDE.2017.2767592
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(SGD) Updates [GNHS11]. Most of the algorithms in NMF literature are based on alternately op-
timizing each of the low rank factors W and H while keeping the other fixed, in which case each
subproblem is a constrained convex optimization problem. Subproblems can then be solved using
standard optimization techniques such as projected gradient or interior point method; a detailed sur-
vey for solving such problems can be found in [WZ13; KHP14]. In this paper, our implementation
uses either ABPP, MU, or HALS. But our parallel framework is extensible to other algorithms
as-is or with a few modifications, as long as they fit an alternating-updating framework (defined in
Section 4).

With the advent of large scale internet data and interest in Big Data, researchers have started
studying scalability of many foundational machine learning algorithms. To illustrate the dimension
of matrices commonly used in the machine learning community, we present a few examples. Nowa-
days the adjacency matrix of a billion-node social network is common. In the matrix representation
of a video data, every frame contains three matrices for each RGB color, which is reshaped into a
column. Thus in the case of a 4K video, every frame will take approximately 27 million rows (4096
row pixels x 2196 column pixels x 3 colors). Similarly, the popular representation of documents in
text mining is a bag-of-words matrix, where the rows are the dictionary and the columns are the
documents (e.g., webpages). Each entry Ai j in the bag-of-words matrix is generally the frequency
count of the word i in the document j. Typically with the explosion of the new terms in social media,
the number of words spans to millions. To handle such high-dimensional matrices, it is important to
study low-rank approximation methods in a data-distributed and parallel computing environment.

In this work, we present an e�cient algorithm and implementation using tools from the field of
High-Performance Computing (HPC). We maintain data in memory (distributed across processors),
take advantage of optimized libraries like BLAS and LAPACK for local computational routines,
and use the Message Passing Interface (MPI) standard to organize interprocessor communication.
Furthermore, the current hardware trend is that available parallelism (and therefore aggregate com-
putational rate) is increasing much more quickly than improvements in network bandwidth and
latency, which implies that the relative cost of communication (compared to computation) is in-
creasing. To address this challenge, we analyze algorithms in terms of both their computation and
communication costs. In particular, we prove in Section 5.2 that in the case of dense input and under
a mild assumption, our proposed algorithm minimizes the amount of data communicated between
processors to within a constant factor of the lower bound.

A key attribute of our framework is that the e�ciency does not require a loss of generality of
NMF algorithms. Our central observation is that most NMF algorithms consist of two main tasks:
(a) performing matrix multiplications and (b) solving Non-negative Least Squares (NLS) subprob-
lems, either approximately or exactly. More importantly, NMF algorithms tend to perform the same
matrix multiplications, di↵ering only in how they solve NLS subproblems, and the matrix multipli-
cations often dominate the running time of the algorithms. Our framework is designed to perform the
matrix multiplications e�ciently and organize the data so that the NLS subproblems can be solved
independently in parallel, leveraging any of a number of possible methods. We explore the overall
e�ciency of the framework and compare three di↵erent NMF methods in Section 6, performing
convergence, scalability, and parameter-tuning experiments on over 1500 processors.

Dataset Type Matrix size NMF Time
Video Dense 1 Million x 13,824 5.73 seconds

Stack Exchange Sparse 627,047 x 12 Million 67 seconds
Webbase-2001 Sparse 118 Million x 118 Million 25 minutes

Table I: MPI-FAUN on large real-world datasets. Reported time is for 30 iterations on 1536 proces-
sors with a low rank of 50.
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7 Conclusion

In this paper, we propose a high-performance distributed-memory
parallel framework for NMF algorithms that iteratively update
the low rank factors in an alternating fashion. Our parallelization
scheme is designed to avoid communication overheads and scales
well to over 1500 cores. The framework is flexible, being (a)
expressive enough to leverage many di↵erent NMF algorithms
and (b) e�cient for both sparse and dense matrices of sizes
that span from a few hundreds to hundreds of millions. Our
open-source software implementation is available for download.

For solving data mining problems at today’s scale, parallel
computation and distributed-memory systems are becoming
prerequisites. We argue in this paper that by using techniques
from high-performance computing, the computations for NMF
can be performed very e�ciently. Our framework allows for the
HPC techniques (e�cient matrix multiplication) to be separated
from the data mining techniques (choice of NMF algorithm), and
we compare data mining techniques at large scale, in terms of
data sizes and number of processors. One conclusion we draw
from the empirical and theoretical observations is that the extra
per-iteration cost of ABPP over alternatives like MU and HALS
decreases as the number of processors p increases, making ABPP
more advantageous in terms of both quality and performance at
larger scales. By reporting time breakdowns that separate local
computation from interprocessor communication, we also see
that our parallelization scheme prevents communication from
bottlenecking the overall computation; our comparison with a
naive approach shows that communication can easily dominate
the running time of each iteration.

In future work, we would like to extend MPI-FAUN algo-
rithm to dense and sparse tensors, computing the CANDE-
COMP/PARAFAC decomposition in parallel with non-negativity
constraints on the factor matrices. We plan on extending our soft-
ware to include more NMF algorithms that fit the AU-NMF frame-
work; these can be used for both matrices and tensors. We would
also like to explore more intelligent distributions of sparse matri-
ces: while our 2D distribution is based on evenly dividing rows and
columns, it does not necessarily load balance the nonzeros of the
matrix, which can lead to load imbalance in matrix multiplications.
We are interested in using graph and hypergraph partitioning
techniques to load balance the memory and computation while at
the same time reducing communication costs as much as possible.
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(d) Dense Real World (Video)

Fig. 5: Per-iteration times with k=50, varying p (strong scaling).

each iteration. Our conclusion is that as we scale up p, this
tradeo↵ is further relaxed so that ABPP becomes more and more
advantageous for both quality and performance.

6.3.3 Scaling k
Figure 6 presents an experiment scaling up the low rank value k
from 10 to 50 with each of the four data sets. In this experiment,
for each data set and algorithm, the problem size is fixed and the
number of processors is fixed to p= 864. As in Section 6.3.2, we
report the average per-iteration times.

We highlight two observations from these experiments:
1) Naive is plagued by communication time that increases

linearly with k;
2) ABPP’s time increases more quickly with k than those of MU

or HALS;
6.3.3.1 Observation 1: We see from the synthetic data sets

(Figures 6a and 6b) that the overall time of Naive increases more
rapidly with k than any other algorithm and that the increase
in time is due mainly to communication (All-Gather). Table 3
predicts that Naive communication volume scales linearly with
k, and we see that in practice the prediction is almost perfect with
the synthetic problems. This confirms that the communication
is dominated by bandwidth costs and not latency costs (which
are constant with respect to k). We note that the communication
cost of MPI-FAUN scales like

p
k, which is why we don’t see as

dramatic an increase in communication time for MU, HALS, or
ABPP in Figure 6.

6.3.3.2 Observation 2: Focusing attention on time spent
in LUC computations, we can compare how MU, HALS, and
ABPP scale di↵erently with k. We see a more rapid increase
of LUC time for ABPP than MU or HALS; this is expected
because the LUC computations unique to ABPP require between
O(k3) and O(k4) operations (depending on the data) while the
unique LUC computations for MU and HALS are O(k2), with
all other parameters fixed. Thus, the extra per-iteration cost of
ABPP increases with k, so the advantage of ABPP of better
error reduction must also increase with k for it to remain superior
at large values of k. We also note that although the number of
operations within MM grows linearly with k, we do not observe
much increase in time from k = 10 to k = 50; this is due to the
improved e�ciency of local MM for larger values of k.

6.3.4 Varying Processor Grid

In this section we demonstrate the e↵ect of the dimensions of the
processor grid on per-iteration performance. For a fixed total num-
ber of processors p, the communication cost of Algorithm 3 varies
with the choice of pr and pc. To minimize the amount of data
communicated, the theoretical analysis suggests that the processor
grid should be chosen to make the sizes of the local data matrix as
square as possible. This implies that if m/p>n, pr= p and pc=1 is
the optimal choice (a 1D processor grid); likewise if n/p>m then
a 1D processor grid with pr = 1 and pc = p is the optimal choice.
Otherwise, a 2D processor grid minimizes communication with
pr⇡
p

mp/n and pc⇡
p

np/m (subject to integrality and pr pc= p).
Figure 7 presents a benchmark of ABPP for the Sparse

Synthetic data set for fixed values of p and k. We vary the
processor grid dimensions from both 1D grids to the 2D grid
that matches the theoretical optimum exactly. Because the sizes
of the Sparse Synthetic matrix are 172,800 ⇥ 115,200 and the
number of processors is 1536, the theoretically optimal grid is
pr =
p

mp/n= 48 and pc =
p

np/m= 32. The experimental results
confirm that this processor grid is optimal, and we see that the
time spent communicating increases as the processor grid deviates
from the optimum, with the 1D grids performing the worst.

6.3.5 Scaling up to Very Large Sparse Datasets

In this section, we test MPI-FAUN by scaling up the problem
size. While we’ve used webbase-1M in previous experiments, we
consider webbase-2001 in this section as it is the largest sparse
data in University of Florida Sparse Matrix Collection [40]. The
former dataset has about 1 million nodes and 3 million edges,

Dense Real world – Video 

Sparse Webbase –
1 Million Vertex Graph

https://github.com/ramkikannan/nmflibrary
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Significance 
The physical images from the above mentioned microscopes and spectroscopes, produce a vector 
parameter variable	" ∈ ℝ% for every spatial position & = (x,y). The problem of unmixing is about the 
determination of '( "  - the individual spectra or end-members and )( &  the corresponding spatial 
maps, also called as loading and abundance maps, from multiple realizations of the experimental 
observations * &, " . The examples of '( "  can be optical spectra in Raman and hyperspectral 
imaging, mass-spectra, energy loss spectra in electron microscopy, force-distance curves in atomic 
force microscopy, etc. The loading maps )( &  correspond then to local concentration of relevant 
chemical species, phases, etc. In the rest of the document, we call '( "  as end-members and )( &  as 
loading maps.  
 Most of the time, there is a non-linear relation between these loading maps and the individual 
spectra that best approximates the input measurements ".  These non-linear relations are often present 
as smaller manifolds in very big data and is due to experimental factors such as many body effects, 
product signals, shifts across energy etc. Consequently, linear unmixing techniques such as PCA or 
NMF, will not produce meaningful results: while linear unmixing is good at capturing macroscopic 
relations, it fails to capture highly non-linear microscopic information.  In the case of NLUM, the 
physical constraints can be broadly realized through (a) feature extraction that is., building a new 
representation from the observed data; through kernel trick or statistical embedding – (b) regularization 
for soft constraints and (c) optimization constraints.  
 We begin with the role of feature extraction in NLUM and compare it with linear unmixing. There 
are two potential approaches for addressing such non-linearity through feature extraction. The first is 
extrapolating the feature space " ∈ ℝ% for all the N samples, from ℝ% to ℝ%′, where  %. ≥ 0 ≫ %.	This 
extrapolation is performed through kernel functions, a technique referred to as the kernel-trick in the 
machine learning literature. The second approach is constructing statistical embeddings that preserve 
the local geodesic distances among the neighbors. The physical constraints can be incorporated in the 
kernel functions and while computing the statistical embedding.  
 In both these approaches, we take the same inputs as linear unmixing (& = (x,y) and " ∈ ℝ%) and 
produce a statistical embedding  f:	ℝ% → ℝ5,  for every &; and the embeddings are different for 
different NLUM algorithms; . Thus, the NLUM algorithm consists of two steps: (a) generating the 
embedding f and (b) using f determining the loading maps )( &  and end members '( " . Typically, 
the size of f will be equal to the number of samples 0 and will be in the order of a few millions, which 
is very difficult to compute using a single machine.  
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Figure 1: Comparision of Linear and Non-linear unmixing 

 Figure 1 shows the difference between linear and non-linear methods more intuitively on a toy 
dataset. PCA and NMF are the standard linear unmixing techniques while the others are non-linear. In 
the case of linear PCA and NMF, there is a loss of information where more than one point in the 
original space becomes mapped to same point in the linear embedding. By contrast, the kernel and 
manifold based NLUM have the ability to distinguish these points.  
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1. Good at Capturing Macroscopic Information
2. Spatially segregated patterns

http://spectronet.de/story_docs/vortraege_2013/130306_ocm/130307_13_gro%C3%9F_fhg_iosb.pdf
http://www.sfpt.fr/hyperspectral/wp-content/uploads/2013/01/cours_Licciardi.pdf

http://spectronet.de/story_docs/vortraege_2013/130306_ocm/130307_13_gro%C3%9F_fhg_iosb.pdf
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Introduction to spectral unmixing 
•  In linear spectral unmixing, the macroscopically pure components are assumed to be

 homogeneously distributed in separate patches within the field of  view. 

•  In nonlinear spectral unmixing, the microscopically pure components are intimately
 mixed inside the pixel. A challenge is how to derive the nonlinear function. 

•  Nonlinear spectral unmixing requires detailed a priori knowledge about the materials. 

Linear interaction Nonlinear interaction 
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http://spectronet.de/story_docs/vortraege_2013/130306_ocm/130307_13_gro%C3%9F_fhg_iosb.pdf

http://www.sfpt.fr/hyperspectral/wp-content/uploads/2013/01/cours_Licciardi.pdf

KPCA Isomap MDS t-SNE

Non-Meaningful results for following reasons:

1. End-members and abundance maps are negative 

2. Too many end-members participate in a particular location 

3. Similar end-members and not distinctive enough

4. Ratio of end-members are not correct

5. Rotated end-members

Solution:

NLUM w/ Physical Constraints such as non-negativity, 

sparsity, spatial smoothness, sum to 1, orthogonal etc. 

http://spectronet.de/story_docs/vortraege_2013/130306_ocm/130307_13_gro%C3%9F_fhg_iosb.pdf
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Higher Order Tensors
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Figure 3: A block matrix and its representation as a 4th-order tensor, created
by reshaping or projection of row blocks as lateral slices of 3-rd-order tensors.
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Figure 4: Graphical representation of multiway array (tensor) data of increas-
ing complexity, both for a single sample and for a set of samples (see [200] for
more detail).

Lower-case letters e.g, i, j, . . . are used for the subscripts in running indices and
capital letters I, J, . . . denote the upper bound of an index, i.e., i = 1, 2, . . . , I and
j = 1, 2, . . . , J. For a positive integer n, the shorthand notation † n ° is used
to denote the set of indices t1, 2, . . . , nu. To summarize, the order of a tensor is
the number of its “modes”, “ways” or “dimensions”, which can include space,
time, frequency, trials, classes, and dictionaries.

Notations and terminology used for tensors and tensors networks differ
across the scientific communities (see Table 2); to this end we employ a unify-
ing notation particularly suitable for machine learning and signal processing
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Figure 72. Normalized fluorescence spectra of k, a single 50 nm edge length gold 
nanoctahedra, and l, a dimer of two 50 nm edge length gold nanoctahedra, immobilized 
on a quartz cover slip.  Fluorescence spectral data was acquired by three consecutive 5 
minute scans, background subtracted, and smoothed to reduce noise. 
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Dimensionality Reduction in Scientific Data
• Multimodal characterization of materials –

comprehensive characterization from chemical composition 
to functional properties on the nanoscale

Thanks Anton Ievlev
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