CSE 6230: Dimensionality Reduction

Srinivas Eswar
Argonne National Laboratory 30-Mar-2023

Outline

1. Motivation

Nonlinear Methods

- a.taonomano

Demonstration

Outline

1. Motivation
2. Linear Methods
a. Unconstrained
b. Constrained

Outline

1. Motivation
2. Linear Methods
a. Unconstrained
b. Constrained
3. Nonlinear Methods
a. Kernel methods
b. Autoencoders

Outline

1. Motivation
2. Linear Methods
a. Unconstrained
b. Constrained
3. Nonlinear Methods
a. Kernel methods
b. Autoencoders
4. Demonstration

Outline

1. Motivation

Nonlinear Methods

- a.taonomano

Demonstration

Notation

Standard input

1. Samples of dimension m are arranged as columns of a matrix.
a. MNIST: 784×70000.
b. SC22: 7.06 m documents, 405 m proteins, 10 m geospatial locations.
2. Mainly consider the distributed-memory model.

$$
\mathbf{X}=\left[\begin{array}{cccc}
\mid & \mid & \ldots & \mid \\
\mathbf{x}_{1} & \mathbf{x}_{2} & \ldots & \mathbf{x}_{n} \\
\mid & \mid & \ldots & \mid
\end{array}\right] \in \mathbb{R}^{m \times n}
$$

Notation

Standard input

1. Samples of dimension m are arranged as columns of a matrix.
a. MNIST: 784×70000.
b. SC22: 7.06 m documents, 405 m proteins, 10 m geospatial locations.
2. Mainly consider the distributed-memory model.

Assume that data lies in or near a low-dimensional structure!

$$
\mathbf{X}=\left[\begin{array}{cccc}
\mid & \mid & \ldots & \mid \\
\mathbf{x}_{1} & \mathbf{x}_{2} & \ldots & \mathbf{x}_{n} \\
\mid & \mid & \ldots & \mid
\end{array}\right] \in \mathbb{R}^{m \times n}
$$

Notation

Standard input

1. Samples of dimension m are arranged as columns of a matrix.
a. MNIST: 784×70000.
b. SC22: 7.06 m documents, 405 m proteins, 10 m geospatial locations.
2. Mainly consider the distributed-memory model.
3. Assume that data lies in or near a low-dimensional structure!

Motivation

1. Data compression.
a. Compress vectors to a smaller dimension (say m to k).
b. Savings in space.
c. Savings in computation.

Removes redundant or highly correlated features
Discover hidden correlations.
c. Noisy features

Visualise
No nther choice!

Motivation

1. Data compression.
a. Compress vectors to a smaller dimension (say \mathbf{m} to \mathbf{k}).
b. Savings in space.
c. Savings in computation.
2. Feature finagling.
a. Removes redundant or highly correlated features.
b. Discover hidden correlations.
c. Noisy features.

Motivation

1. Data compression.
a. Compress vectors to a smaller dimension (say \mathbf{m} to \mathbf{k}).
b. Savings in space.
c. Savings in computation.
2. Feature finagling.
a. Removes redundant or highly correlated features.
b. Discover hidden correlations.
c. Noisy features.
3. Visualise.

Motivation

1. Data compression.
a. Compress vectors to a smaller dimension (say \mathbf{m} to \mathbf{k}).
b. Savings in space.
c. Savings in computation.
2. Feature finagling.
a. Removes redundant or highly correlated features.
b. Discover hidden correlations.
c. Noisy features.
3. Visualise.
4. No other choice!

Outline

2. Linear Methods
a. Unconstrained
b. Constrained

Linear Methods

Approximate the input in a new basis.

$$
\underset{m \times n}{\mathbf{X}} \approx \underset{m \times k}{\mathbf{W}} \cdot \underset{k \times n}{\mathbf{H}}
$$

Linear Methods

Approximate the input in a new basis.

$$
\underset{m \times n}{\mathbf{X}} \approx \underset{m \times k}{\mathbf{W}} \cdot \underset{k \times n}{\mathbf{H}}
$$

1. Simplicity.
a. Basecase to most nonlinear methods.
b. Analysable.

Linear Methods

Approximate the input in a new basis.

$$
\underset{m \times n}{\mathbf{X}} \approx \underset{m \times k}{\mathbf{W}} \cdot \underset{k \times n}{\mathbf{H}}
$$

1. Simplicity.
a. Basecase to most nonlinear methods.
b. Analysable.
2. Interpretability and extensibility.

Linear Methods

Approximate the input in a new basis.

$\underset{m \times n}{\mathbf{X}} \approx \underset{m \times k}{\mathbf{W}} \cdot \underset{k \times n}{\mathbf{H}}$

1. Simplicity.

a. Basecase to most nonlinear methods.
b. Analysable.
2. Interpretability and extensibility.
3. Fast and scalable methods.
a. Standard libraries (BLAS, LAPACK, ...) and constant improvement (communication-avoiding, randomisation, ...).

Linear Methods - SVD

Singular Value Decomposition

$$
\mathbf{x}=\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{\top}=\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}
$$

Linear Methods - SVD

Singular Value Decomposition

$$
\mathbf{x}=\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{\top}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}
$$

1. Gold standard for teasing a matrix apart.

Linear Methods - SVD

Singular Value Decomposition

$$
\mathbf{x}=\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{\top}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}
$$

1. Gold standard for teasing a matrix apart.
2. Minimises both the 2-norm and Frobenius-norm solutions.

$$
\min _{\operatorname{rank}(\mathbf{A}) \leq k}\|\mathbf{X}-\mathbf{A}\|_{\xi}
$$

Linear Methods - SVD

Singular Value Decomposition

$$
\mathbf{x}=\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{\top}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}
$$

1. Gold standard for teasing a matrix apart.
2. Minimises both the 2-norm and Frobenius-norm solutions.

$$
\min _{\operatorname{rank}(\mathbf{A}) \leq k}\|\mathbf{X}-\mathbf{A}\|_{\xi}
$$

3. Two broad categories of solvers: dense and sparse.

Linear Methods - SVD

Dense Case

1. Reduction to bidiagonal form via two-sided orthogonal transformations.

BLAS calls xGESVD and xGEBRD

Linear Methods - SVD

Dense Case

1. Reduction to bidiagonal form via two-sided orthogonal transformations.
2. Solve the bidiagonal matrix iteratively.

Linear Methods - SVD

Dense Case

$$
\mathbf{X} \rightarrow \mathbf{U}_{1} \mathbf{B} V_{1}^{\top} \rightarrow \mathbf{U}_{1} \mathbf{U}_{2} \boldsymbol{\Sigma} \mathbf{V}_{2}^{\top} \mathbf{V}_{1}^{\top}
$$

1. Reduction to bidiagonal form via two-sided orthogonal transformations.
2. Solve the bidiagonal matrix iteratively.
3. BLAS calls $x G E S V D$ and $x G E B R D$.

Linear Methods - SVD

Other condensed forms.

1. Tridiagonal form.

a. Symmetric Eigenvalue Problems.
b. XSYTRD routine.

Linear Methods - SVD

Other condensed forms.

1. Tridiagonal form.

a. Symmetric Eigenvalue Problems.
b. xSYTRD routine.
2. Upper Hessenberg form.

a. Nonsymmetric Eigenvalue Problems.
b. xGEHRD routine.
3. Employ Householder reflectors

Linear Methods - SVD

Other condensed forms.

1. Tridiagonal form.
a. Symmetric Eigenvalue Problems.
b. $x S Y T R D$ routine
2. Upper Hessenberg form.

a. Nonsymmetric Eigenvalue Problems.
b. xGEHRD routine.
3. Employ Householder reflectors.

Linear Methods - SVD

Sparse Case

1. Lanczos bidiagonalisation to generate a k-by-k system.

Linear Methods - SVD

Sparse Case

1. Lanczos bidiagonalisation to generate a k-by-k system.
2. Need only $\mathbf{x G E M V}$ calls.

Linear Methods - SVD

1. Choose a starting vector $p_{0} \in \mathbb{R}^{m}$, and let

$$
\beta_{1}=\left\|p_{0}\right\|_{2}, \quad u_{1}=p_{0} / \beta_{1} \text { and } v_{0} \equiv 0
$$

2. for $j=1,2, \ldots, k$ do

$$
\begin{aligned}
& \qquad \begin{array}{l}
r_{j}=A^{T} u_{j}-\beta_{j} v_{j-1} \\
\alpha_{j} \\
=\left\|r_{j}\right\|_{2} \\
v_{j}
\end{array}=r_{j} / \alpha_{j} \\
& p_{j}=A v_{j}-\alpha_{j} u_{j} \\
& \beta_{j+1}=\left\|p_{j}\right\|_{2} \\
& u_{j+1}=p_{j} / \beta_{j+1} \\
& \text { end }
\end{aligned}
$$

Linear Methods - SVD

Randomisation.

1. Multiply the input by a random matrix Ω (n-by- $(k+p)$) to find its range.

Linear Methods - SVD

Randomisation.

1. Multiply the input by a random matrix Ω (n-by- $(k+p)$) to find its range.
2. The SVD is now approximated in this range (upto k).

Linear Methods - SVD

Randomisation.

1. Multiply the input by a random matrix Ω ($n-b y-(k+p)$) to find its range.
2. The SVD is now approximated in this range (upto k).

$$
\begin{gathered}
\mathbb{E}\left\|\mathbf{X}-\hat{\mathbf{X}}_{k}\right\|_{F} \leq\left(1+\frac{k}{p-1}\right)^{1 / 2}\left(\sum_{j>k} \sigma_{j}^{2}\right)^{1 / 2} \\
\mathbb{E}\left\|\mathbf{X}-\hat{\mathbf{X}}_{k}\right\|_{2} \leq\left(1+\sqrt{\frac{k}{p-1}}\right) \sigma_{k+1}+\frac{e \sqrt{k+p}}{p}\left(\sum_{j>k} \sigma_{j}^{2}\right)^{1 / 2}
\end{gathered}
$$

Linear Methods - NMF

1. SVD not good for interpretability.

Linear Methods - NMF

1. SVD not good for interpretability.
2. Can impose constraints on factors to improve interpretability (at what cost?).
a. Column Subset Methods, Sparse Dictionary Learning, Nonnegative Matrix Factorisation.

Linear Methods - NMF

Nonnegative Matrix Factorisation

$$
\min _{\mathbf{W} \geq 0, \mathbf{H} \geq 0}\|\mathbf{X}-\mathbf{W H}\|_{F}^{2}
$$

Linear Methods - NMF

Nonnegative Matrix Factorisation

$$
\min _{\mathbf{W} \geq 0, \mathbf{H} \geq 0}\|\mathbf{X}-\mathbf{W} \mathbf{H}\|_{F}^{2}
$$

1. Block Coordinate Descent.

a. Splits the variables into subsets which are easier to compute.

Linear Methods - NMF

(a) Two blocks.

(b) $2 k$ blocks.

(c) $(m+n) k$ blocks.

Linear Methods - NMF

Nonnegative Matrix Factorisation

$$
\min _{\mathbf{W} \geq 0, \mathbf{H} \geq 0}\|\mathbf{X}-\mathbf{W} \mathbf{H}\|_{F}^{2}
$$

1. Block Coordinate Descent.
a. Splits the variables into subsets which are easier to compute.
2. Bottleneck computation becomes a xGEMM call.
a. All the terms in the gradient.

Linear Methods - NMF

Gradient computation.

1. Matrix multiplications involving the input matrix.
a. Major bottleneck.

$$
\begin{array}{r}
\nabla_{\mathbf{w}}=2\left(\mathbf{W H H}^{\top}-\mathbf{X H}^{\top}\right) \\
\nabla_{\mathbf{H}}=2\left(\mathbf{W}^{\top} \mathbf{W H}-\mathbf{W}^{\top} \mathbf{X}\right)
\end{array}
$$

Linear Methods - NMF

Gradient computation.

1. Matrix multiplications involving the input matrix.
a. Major bottleneck.
2. Gram matrix computations.
a. Also causes communication in distributed case.

$$
\begin{gathered}
\nabla_{\mathbf{W}}=2\left(\mathbf{W H H}^{\top}-\mathbf{X H}^{\top}\right) \\
\nabla_{\mathbf{H}}=2\left(\mathbf{W}^{\top} \mathbf{W} \mathbf{H}-\mathbf{W}^{\top} \mathbf{X}\right)
\end{gathered}
$$

Linear Methods - NMF

Nonnegative Matrix Factorisation

$$
\min _{\mathbf{W} \geq 0, \mathbf{H} \geq 0}\|\mathbf{X}-\mathbf{W} \mathbf{H}\|_{F}^{2}
$$

1. Block Coordinate Descent.

a. Splits the variables into subsets which are easier to compute.
2. Bottleneck computation becomes a xGEMM call.
a. All the terms in the gradient.
3. Three variants of $x G E M M$ in the distributed case.
a. What variant is NMF in?

Linear Methods - NMF

(a) Three large dimensions.

(b) Two large dimensions.

(c) One large dimension.

Demmel et al.. "Communication-optimal parallel recursive rectangular matrix multiplication" (2013)
Daas et al. "Brief Announcement: Tight Memory-Independent Parallel Matrix Multiplication Communication Lower Bounds" (2022)

Outline

3. Nonlinear Methods
a. Kernel methods
b. Autoencoders

Nonlinear Methods

1. Sometimes linear methods don't cut it!
a. Distance no longer Euclidean.

Nonlinear Methods

1. Sometimes linear methods don't cut it!
a. Distance no longer Euclidean.
2. Lower dimensional manifold.
a. Embedded in higher dimensional ambient space.
b. Geodesic distance is the measure.
c. Usually measured as a graph walk or via a kernel.
Some caveats
Multiple hyperparameter choices.
b. Hard to interpret discovered manifol

Nonlinear Methods

1. Sometimes linear methods don't cut it!
a. Distance no longer Euclidean.
2. Lower dimensional manifold.
a. Embedded in higher dimensional ambient space.
b. Geodesic distance is the measure.
c. Usually measured as a graph walk or via a kernel.
3. Some caveats.
a. Multiple hyperparameter choices.
b. Hard to interpret discovered manifold.

Nonlinear Methods - Kernel PCA

1. Use the "kernel trick" to make things linear.
a. Assume a function f , or kernel , is provided to compute distances.
b. This corresponds to a Euclidean distance between in a "lifted feature" space.

$$
\mathbf{K}_{i j}=f\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left\langle\phi\left(\mathbf{x}_{i}\right), \phi\left(\mathbf{x}_{j}\right)\right\rangle=\phi\left(\mathbf{x}_{i}\right)^{\top} \phi\left(\mathbf{x}_{j}\right)
$$

Nonlinear Methods - Kernel PCA

1. Use the "kernel trick" to make things linear.
a. Assume a function f , or kernel , is provided to compute distances.
b. This corresponds to a Euclidean distance between in a "lifted feature" space.

$$
\mathbf{K}_{i j}=f\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left\langle\phi\left(\mathbf{x}_{i}\right), \phi\left(\mathbf{x}_{j}\right)\right\rangle=\phi\left(\mathbf{x}_{i}\right)^{\top} \phi\left(\mathbf{x}_{j}\right)
$$

2. Now apply SVD on this similarity matrix.
a. Corresponds to best least-squares approximation in the lifted space.
b. Typically, only require a few singular vectors.

Nonlinear Methods - Kernel PCA

1. Use the "kernel trick" to make things linear.
a. Assume a function f , or kernel , is provided to compute distances.
b. This corresponds to a Euclidean distance between in a "lifted feature" space.

$$
\mathbf{K}_{i j}=f\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left\langle\phi\left(\mathbf{x}_{i}\right), \phi\left(\mathbf{x}_{j}\right)\right\rangle=\phi\left(\mathbf{x}_{i}\right)^{\top} \phi\left(\mathbf{x}_{j}\right)
$$

2. Now apply SVD on this similarity matrix.
a. Corresponds to best least-squares approximation in the lifted space.
b. Typically, only require a few singular vectors.
3. Tree codes to compute the Kernel matrix quickly.

Nonlinear Methods - Kernel PCA

N -body problem

1. Compute the gravitational interactions between N bodies.
a. Naively computes between all pairs: $\mathrm{O}\left(\mathrm{N}^{2}\right)$.
b. Approximately compute as $\mathrm{O}(\mathrm{N} \log \mathrm{N})$.

Recursive subdivision of the space.
Near and far particles
Store total mass at the centre-of-mass

Nonlinear Methods - Kernel PCA

N-body problem

1. Compute the gravitational interactions between N bodies.
a. Naively computes between all pairs: $\mathrm{O}\left(\mathrm{N}^{2}\right)$.
b. Approximately compute as $\mathrm{O}(\mathrm{N} \log \mathrm{N})$.
2. Divide the space for approximation.
a. Recursive subdivision of the space.
b. Near and far particles.
c. Store total mass at the centre-of-mass.

Nonlinear Methods - Kernel PCA

1. View kernel matrix as a similarity graph.
a. In KPCA all-pairs distances are captured.

Nonlinear Methods - Kernel PCA

1. View kernel matrix as a similarity graph.
a. In KPCA all-pairs distances are captured.
2. Need to sparsify the kernel matrix.
a. Prune neighbours in tree construction.

Lee, Vuduc, Gray. "A Distributed Kernel Summation Framework for General-Dimensional Machine Learning" (2012)
Curtin. "Improving dual-tree algorithms." (2015)
McInnes, Healy, Melville. "Umap: Uniform manifold approximation and projection for dimension reduction" (2018)

Nonlinear Methods - Kernel PCA

1. View kernel matrix as a similarity graph.
a. In KPCA all-pairs distances are captured.
2. Need to sparsify the kernel matrix.
a. Prune neighbours in tree construction.
3. Other versions of the similarity graph results in different embeddings.

Nonlinear Methods - Kernel PCA

1. View kernel matrix as a similarity graph.
a. In KPCA all-pairs distances are captured.
2. Need to sparsify the kernel matrix.
a. Prune neighbours in tree construction.
3. Other versions of the similarity graph results in different embeddings.
4. UMAP similarity graph.
a. Only store the "nearest" d neighbours distances.
b. Perform a second optimisation for graph layout.
c. Results in manifolds where data is uniformly distributed.

Nonlinear Methods - Autoencoders

1. Remove the assumptions of specifying out a kernel.
a. Learn it from the data!

Nonlinear Methods - Autoencoders

1. Remove the assumptions of specifying out a kernel.
a. Learn it from the data!
2. Enter the autoencoder.
a. Many different flavours: fully connected, convolutional, variational, ...

Nonlinear Methods - Autoencoders

Convolutional Autoencoder

Nonlinear Methods - Autoencoders

1. Remove the assumptions of specifying out a kernel.
a. Learn it from the data!
2. Enter the autoencoder.
a. Many different flavours: fully connected, convolutional, variational, ...
3. Convert convolutions to XGEMM.
a. Need multiple of these small matrix multiplies.
b. Batched xGEMM.

Nonlinear Methods - Autoencoders

Convolutions as xGEMM

Convolution Kernel

Dongarra et al.. "Optimised Batched Linear Algebra for Modern Architectures" (2017) Yang, Lu, Wang. "A batched GEMM optimisation framework for deep learning" (2022)

Nonlinear Methods - Autoencoders

1. Remove the assumptions of specifying out a kernel.
a. Learn it from the data!
2. Enter the autoencoder.
a. Many different flavours: fully connected, convolutional, variational, ...
3. Convert convolutions to $\mathbf{x G E M M}$.
a. Need multiple of these small matrix multiplies.
b. Batched xGEMM.
4. Kernel fusion.
a. Fuse all elementwise operations (e.g. ReLU, sigmoid, ...).
