CSE 6230: Dimensionality Reduction

Srinivas Eswar Argonne National Laboratory 30-Mar-2023

1. Motivation

2. Linear Methods

- a. Unconstrained
- b. Constrained

3. Nonlinear Methods

- a. Kernel methods
- b. Autoencoders
- 4. Demonstration

- 1. Motivation
- 2. Linear Methods
 - a. Unconstrained
 - b. Constrained
- 3. Nonlinear Methods
 - a. Kernel methods
 - b. Autoencoders
- 4. Demonstration

1. Motivation

2. Linear Methods

- a. Unconstrained
- b. Constrained

3. Nonlinear Methods

- a. Kernel methods
- b. Autoencoders

4. Demonstration

1. Motivation

2. Linear Methods

- a. Unconstrained
- b. Constrained

3. Nonlinear Methods

- a. Kernel methods
- b. Autoencoders
- 4. Demonstration

1. Motivation

2. Linear Methods

- a. Unconstrained
- b. Constrained

3. Nonlinear Methods

- a. Kernel methods
- b. Autoencoders
- 4. Demonstration

Notation

Standard input

- 1. **Samples** of dimension m are arranged as **columns** of a matrix.
 - a. MNIST: 784 x 70000.
 - b. SC22: 7.06m documents, 405m proteins, 10m geospatial locations.
- 2. Mainly consider the **distributed-memory** model.
- 3. Assume that data lies in or near a low-dimensional structure!

$$\mathbf{X} = egin{bmatrix} ert & ert & \dots & ert \ \mathbf{x}_1 & \mathbf{x}_2 & \dots & \mathbf{x}_n \ ert & ert & \dots & ert \end{bmatrix} \in \mathbb{R}^{m imes n}$$

*https://www.hpcwire.com/2022/08/12/sc22-unveils-acm-gordon-bell-prize-finalists/

Notation

Standard input

- 1. **Samples** of dimension m are arranged as **columns** of a matrix.
 - a. MNIST: 784 x 70000.
 - b. SC22: 7.06m documents, 405m proteins, 10m geospatial locations.
- 2. Mainly consider the **distributed-memory** model.
- 3. Assume that data lies in or near a low-dimensional structure!

$$\mathbf{X} = egin{bmatrix} ert & ert & \ddots & ert \ \mathbf{x}_1 & \mathbf{x}_2 & \ldots & \mathbf{x}_n \ ert & ert & \ddots & ert \end{bmatrix} \in \mathbb{R}^{m imes n}$$

*https://www.hpcwire.com/2022/08/12/sc22-unveils-acm-gordon-bell-prize-finalists/

Notation

Standard input

- 1. **Samples** of dimension m are arranged as **columns** of a matrix.
 - a. MNIST: 784 x 70000.
 - b. SC22: 7.06m documents, 405m proteins, 10m geospatial locations.
- 2. Mainly consider the **distributed-memory** model.
- 3. Assume that data lies in or near a low-dimensional structure!

$$\mathbf{X} = egin{bmatrix} ert & ert & \dots & ert \ \mathbf{x}_1 & \mathbf{x}_2 & \dots & \mathbf{x}_n \ ert & ert & \dots & ert \end{bmatrix} \in \mathbb{R}^{m imes n}$$

*https://www.hpcwire.com/2022/08/12/sc22-unveils-acm-gordon-bell-prize-finalists/

1. Data compression.

- a. Compress vectors to a smaller dimension (say **m** to **k**).
- b. Savings in space.
- c. Savings in computation.

2. Feature finagling.

- a. Removes redundant or highly correlated features
- b. Discover hidden correlations.
- c. Noisy features.
- 3. Visualise.
- 4. No other choice!

1. Data compression.

- a. Compress vectors to a smaller dimension (say **m** to **k**).
- b. Savings in space.
- c. Savings in computation.

2. Feature **finagling**.

- a. Removes redundant or highly correlated features.
- b. Discover hidden correlations.
- c. Noisy features.
- 3. Visualise.
- 4. No other choice!

1. Data compression.

- a. Compress vectors to a smaller dimension (say **m** to **k**).
- b. Savings in space.
- c. Savings in computation.

2. Feature **finagling**.

- a. Removes redundant or highly correlated features.
- b. Discover hidden correlations.
- c. Noisy features.

3. Visualise.

4. No other choice!

1. Data compression.

- a. Compress vectors to a smaller dimension (say **m** to **k**).
- b. Savings in space.
- c. Savings in computation.

2. Feature **finagling**.

- a. Removes redundant or highly correlated features.
- b. Discover hidden correlations.
- c. Noisy features.

3. Visualise.

4. No other choice!

1. Motivation

2. Linear Methods

- a. Unconstrained
- b. Constrained

3. Nonlinear Methods

- a. Kernel methods
- b. Autoencoders
- 4. Demonstration

Approximate the input in a new **basis**.

$\mathbf{X}_{m imes n} pprox \mathbf{W}_{m imes k} \cdot \mathbf{H}_{k imes n}$

- 1. Simplicity.
 - a. Basecase to most nonlinear methods.
 - b. Analysable.
- 2. Interpretability and extensibility.
- 3. Fast and scalable methods.
 - Standard libraries (BLAS, LAPACK, ...) and constant improvement (communication-avoiding, randomisation, ...).

Approximate the input in a new **basis**.

$$\mathbf{X}_{m imes n} pprox \mathbf{W}_{m imes k} \cdot \mathbf{H}_{k imes n}$$

- 1. Simplicity.
 - a. Basecase to most nonlinear methods.
 - b. Analysable.
- 2. Interpretability and extensibility.
- 3. Fast and scalable methods.
 - a. Standard libraries (BLAS, LAPACK, ...) and constant improvement (communication-avoiding, randomisation, ...).

Approximate the input in a new **basis**.

$$\mathbf{X}_{m imes n} pprox \mathbf{W}_{m imes k} \cdot \mathbf{H}_{k imes n}$$

- 1. Simplicity.
 - a. Basecase to most nonlinear methods.
 - b. Analysable.
- 2. Interpretability and extensibility.
- 3. Fast and scalable methods.
 - a. Standard libraries (BLAS, LAPACK, ...) and constant improvement (communication-avoiding, randomisation, ...).

Approximate the input in a new **basis**.

$$\mathbf{X}_{m imes n} pprox \mathbf{W}_{m imes k} \cdot \mathbf{H}_{k imes n}$$

- 1. Simplicity.
 - a. Basecase to most nonlinear methods.
 - b. Analysable.
- 2. Interpretability and extensibility.
- 3. Fast and scalable methods.
 - a. Standard libraries (BLAS, LAPACK, ...) and constant improvement (communication-avoiding, randomisation, ...).

Singular Value Decomposition

$$\mathbf{X} = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^ op = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^ op$$

- 1. Gold standard for teasing a matrix apart.
- 2. Minimises both the 2-norm and Frobenius-norm solutions.

Singular Value Decomposition

$$\mathbf{X} = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^ op = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^ op$$

- 1. Gold standard for teasing a matrix apart.
- 2. Minimises both the 2-norm and Frobenius-norm solutions.

Singular Value Decomposition

$$\mathbf{X} = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^ op = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^ op$$

- 1. Gold standard for teasing a matrix apart.
- 2. Minimises both the 2-norm and Frobenius-norm solutions.

$$\min_{\mathsf{rank}(\mathbf{A}) \leq k} \|\mathbf{X} - \mathbf{A}\|_{\xi}$$

Singular Value Decomposition

$$\mathbf{X} = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^ op = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^ op$$

- 1. Gold standard for teasing a matrix apart.
- 2. Minimises both the 2-norm and Frobenius-norm solutions.

$$\min_{\mathsf{rank}(\mathbf{A}) \leq k} \|\mathbf{X} - \mathbf{A}\|_{\xi}$$

Dense Case

- 1. Reduction to **bidiagonal** form via two-sided **orthogonal** transformations.
- 2. Solve the bidiagonal matrix **iteratively**.
- 3. BLAS calls **xGESVD** and **xGEBRD**.

Dense Case

- 1. Reduction to **bidiagonal** form via two-sided **orthogonal** transformations.
- 2. Solve the bidiagonal matrix **iteratively**.

3. BLAS calls **xGESVD** and **xGEBRD**.

Dense Case

- 1. Reduction to **bidiagonal** form via two-sided **orthogonal** transformations.
- 2. Solve the bidiagonal matrix **iteratively**.
- 3. BLAS calls **xGESVD** and **xGEBRD**.

Other condensed forms.

- 1. Tridiagonal form.
 - a. Symmetric Eigenvalue Problems.
 - b. **xSYTRD** routine.
- 2. Upper **Hessenberg** form.
 - a. Nonsymmetric Eigenvalue Problems.
 - b. **xGEHRD** routine.
- 3. Employ Householder reflectors.

Other condensed forms.

- 1. Tridiagonal form.
 - a. Symmetric Eigenvalue Problems.
 - b. **xSYTRD** routine.
- 2. Upper **Hessenberg** form.
 - a. Nonsymmetric Eigenvalue Problems.
 - b. **xGEHRD** routine.
- 3. Employ **Householder** reflectors.

Other condensed forms.

- 1. Tridiagonal form.
 - a. Symmetric Eigenvalue Problems.
 - b. **xSYTRD** routine.
- 2. Upper **Hessenberg** form.
 - a. Nonsymmetric Eigenvalue Problems.
 - b. **xGEHRD** routine.
- 3. Employ Householder reflectors.

Sparse Case

Lanczos bidiagonalisation to generate a k-by-k system.
 Need only xGEMV calls.

Larsen. "Lanczos bidiagonalisation with partial reorthogonalisation" (1998)

Sparse Case

- 1. Lanczos bidiagonalisation to generate a k-by-k system.
- 2. Need only **xGEMV** calls.

1. Choose a starting vector $p_0 \in \mathbb{R}^m$, and let $\beta_1 = \|p_0\|_2, \ u_1 = p_0/\beta_1 \text{ and } v_0 \equiv 0$ 2. for j = 1, 2, ..., k do $r_i = A^T u_i - \beta_i v_{i-1}$ $\alpha_i = \|r_i\|_2$ $v_i = r_i / \alpha_i$ $p_i = Av_i - \alpha_i u_i$ $\beta_{j+1} = \|p_j\|_2$ $u_{j+1} = p_j / \beta_{j+1}$ end

Randomisation.

- Multiply the input by a *random* matrix Ω (n-by-(k+p)) to find its range.
- 2. The SVD is now **approximated** in this range (upto k).

Halko, Martinsson, Tropp. "Finding Structure with Randomness" (2011) Gu. "Subspace Iteration Randomisation and Singular Value Problems" (2015)

Randomisation.

- Multiply the input by a *random* matrix Ω (n-by-(k+p)) to find its range.
- 2. The SVD is now **approximated** in this range (upto k).

Halko, Martinsson, Tropp. "Finding Structure with Randomness" (2011) Gu. "Subspace Iteration Randomisation and Singular Value Problems" (2015)

Randomisation.

- 1. Multiply the input by a *random* matrix Ω (n-by-(k+p)) to find its range.
- 2. The SVD is now **approximated** in this range (upto k).

 $\mathsf{svd}(\mathbf{Q}^{ op}\mathbf{X})$

$$\mathbb{E} \| \mathbf{X} - \hat{\mathbf{X}}_k \|_F \le \left(1 + rac{k}{p-1}
ight)^{1/2} \left(\sum_{j > k} \sigma_j^2
ight)^{1/2}$$

 $\mathbb{E} \| \mathbf{X} - \hat{\mathbf{X}}_k \|_2 \le \left(1 + \sqrt{rac{k}{p-1}}
ight) \sigma_{k+1} + rac{e\sqrt{k+p}}{p} \left(\sum_{j > k} \sigma_j^2
ight)^{1/2}$

Halko, Martinsson, Tropp. "Finding Structure with Randomness" (2011) Gu. "Subspace Iteration Randomisation and Singular Value Problems" (2015)

1. **SVD** not good for **interpretability**.

2. Can impose constraints on factors to improve interpretability (at what cost?).

a. Column Subset Methods, Sparse Dictionary Learning, Nonnegative Matrix Factorisation.

- 1. **SVD** not good for **interpretability**.
- 2. Can impose **constraints** on factors to improve interpretability (at what cost?).
 - a. Column Subset Methods, Sparse Dictionary Learning, Nonnegative Matrix Factorisation.

Nonnegative Matrix Factorisation

$$\min_{\mathbf{W}\geq 0,\mathbf{H}\geq 0}\|\mathbf{X}-\mathbf{W}\mathbf{H}\|_F^2$$

- 1. Block Coordinate Descent.
 - a. Splits the **variables** into **subsets** which are easier to compute.
- 2. Bottleneck computation becomes a xGEMM call.
 - a. All the terms in the **gradient**.
- 3. Three variants of xGEMM in the distributed case.
 - a. What variant is NMF in?

Nonnegative Matrix Factorisation

$$\min_{\mathbf{W}\geq 0,\mathbf{H}\geq 0}\|\mathbf{X}-\mathbf{W}\mathbf{H}\|_F^2$$

1. Block Coordinate Descent.

- a. Splits the variables into subsets which are easier to compute.
- Bottleneck computation becomes a xGEMM call.
 - a. All the terms in the gradient.
- 3. Three variants of xGEMM in the distributed case.
 - a. What variant is NMF in?

Nonnegative Matrix Factorisation

$$\min_{\mathbf{W}\geq 0,\mathbf{H}\geq 0}\|\mathbf{X}-\mathbf{W}\mathbf{H}\|_F^2$$

- 1. Block Coordinate Descent.
 - a. Splits the **variables** into **subsets** which are easier to compute.
- 2. Bottleneck computation becomes a **xGEMM** call.
 - a. All the terms in the **gradient**.
- 3. Three variants of xGEMM in the distributed case.
 - a. What variant is NMF in?

Gradient computation.

- 1. Matrix multiplications involving the **input matrix**.
 - a. Major **bottleneck**.
- 2. Gram matrix computations.
 - a. Also causes communication in distributed case.

$$abla_{\mathbf{W}} = 2(\mathbf{W}\mathbf{H}\mathbf{H}^{ op} - \mathbf{X}\mathbf{H}^{ op})$$
 $abla_{\mathbf{H}} = 2(\mathbf{W}^{ op}\mathbf{W}\mathbf{H} - \mathbf{W}^{ op}\mathbf{X})$

Gradient computation.

- 1. Matrix multiplications involving the **input matrix**.
 - a. Major **bottleneck**.
- 2. Gram matrix computations.
 - a. Also causes **communication** in distributed case.

$$abla_{\mathbf{W}} = 2(\mathbf{W}\mathbf{H}\mathbf{H}^{ op} - \mathbf{X}\mathbf{H}^{ op})$$
 $abla_{\mathbf{H}} = 2(\mathbf{W}^{ op}\mathbf{W}\mathbf{H} - \mathbf{W}^{ op}\mathbf{X})$

Nonnegative Matrix Factorisation

$$\min_{\mathbf{W}\geq 0,\mathbf{H}\geq 0}\|\mathbf{X}-\mathbf{W}\mathbf{H}\|_F^2$$

- 1. Block Coordinate Descent.
 - a. Splits the **variables** into **subsets** which are easier to compute.
- 2. Bottleneck computation becomes a **xGEMM** call.
 - a. All the terms in the **gradient**.
- 3. Three variants of xGEMM in the distributed case.
 - a. What variant is NMF in?

Linear Methods - NMF

(a) Three large dimensions.

(b) Two large dimensions.

(c) One large dimension.

Demmel et al.. "Communication-optimal parallel recursive rectangular matrix multiplication" (2013) Daas et al. "Brief Announcement: Tight Memory-Independent Parallel Matrix Multiplication Communication Lower Bounds" (2022)

- 1. Motivation
- 2. Linear Methods
 - a. Unconstrained
 - b. Constrained

3. Nonlinear Methods

- a. Kernel methods
- b. Autoencoders
- 4. Demonstration

Nonlinear Methods

- 1. Sometimes linear methods don't cut it!
 - a. Distance no longer Euclidean.

2. Lower dimensional **manifold**.

- a. **Embedded** in higher dimensional ambient space.
- b. Geodesic distance is the measure.
- c. Usually measured as a graph walk or via a kernel.
- 3. Some caveats.
 - a. Multiple hyperparameter choices.
 - b. Hard to **interpret** discovered manifold.

Swiss Roll in Ambient Space

n_samples=1500

Image source: scikit-learn, "Swiss Roll and Swiss-Hole Reduction"

Nonlinear Methods

- 1. Sometimes linear methods don't cut it!
 - a. Distance no longer Euclidean.
- 2. Lower dimensional **manifold**.
 - a. **Embedded** in higher dimensional ambient space.
 - b. **Geodesic** distance is the measure.
 - c. Usually measured as a **graph walk** or via a **kernel**.
- 3. Some caveats.
 - a. Multiple hyperparameter choices.
 - b. Hard to **interpret** discovered manifold.

Swiss Roll in Ambient Space

n_samples=1500

Image source: scikit-learn, "Swiss Roll and Swiss-Hole Reduction"

Nonlinear Methods

- 1. Sometimes linear methods don't cut it!
 - a. Distance no longer Euclidean.
- 2. Lower dimensional manifold.
 - a. **Embedded** in higher dimensional ambient space.
 - b. **Geodesic** distance is the measure.
 - c. Usually measured as a **graph walk** or via a **kernel**.
- 3. Some caveats.
 - a. Multiple hyperparameter choices.
 - b. Hard to **interpret** discovered manifold.

Swiss Roll in Ambient Space

n_samples=1500

Image source: scikit-learn, "Swiss Roll and Swiss-Hole Reduction"

- 1. Use the "**kernel trick**" to make things linear.
 - a. Assume a **function** f, or kernel , is provided to compute distances.
 - b. This corresponds to a Euclidean distance between in a "lifted feature" space.

$$\mathbf{K}_{ij} = f(\mathbf{x}_i, \mathbf{x}_j) = \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j)
angle = \phi(\mathbf{x}_i)^ op \phi(\mathbf{x}_j)$$

- 2. Now apply **SVD** on this similarity matrix.
 - a. Corresponds to **best least-squares approximation** in the lifted space.
 - b. Typically, only require a few singular vectors.
- 3. Tree codes to compute the Kernel matrix quickly.

- 1. Use the "**kernel trick**" to make things linear.
 - a. Assume a **function** f, or kernel , is provided to compute distances.
 - b. This corresponds to a Euclidean distance between in a "lifted feature" space.

$$\mathbf{K}_{ij} = f(\mathbf{x}_i, \mathbf{x}_j) = \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j)
angle = \phi(\mathbf{x}_i)^ op \phi(\mathbf{x}_j)$$

- 2. Now apply **SVD** on this similarity matrix.
 - a. Corresponds to **best least-squares approximation** in the lifted space.
 - b. Typically, only require a **few** singular vectors.
- 3. **Tree codes** to compute the Kernel matrix quickly.

- 1. Use the "**kernel trick**" to make things linear.
 - a. Assume a **function** f, or kernel , is provided to compute distances.
 - b. This corresponds to a Euclidean distance between in a "lifted feature" space.

$$\mathbf{K}_{ij} = f(\mathbf{x}_i, \mathbf{x}_j) = \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j)
angle = \phi(\mathbf{x}_i)^ op \phi(\mathbf{x}_j)$$

- 2. Now apply **SVD** on this similarity matrix.
 - a. Corresponds to **best least-squares approximation** in the lifted space.
 - b. Typically, only require a **few** singular vectors.
- 3. Tree codes to compute the Kernel matrix quickly.

N-body problem

- 1. Compute the **gravitational interactions** between N bodies.
 - a. Naively computes between all **pairs**: $O(N^2)$.
 - b. Approximately compute as O(N log N).
- 2. Divide the space for approximation.
 - a. **Recursive subdivision** of the space.
 - b. Near and far particles.
 - c. Store total mass at the centre-of-mass.

N-body problem

- 1. Compute the **gravitational interactions** between N bodies.
 - a. Naively computes between all **pairs**: O(N²).
 - b. **Approximately** compute as O(N log N).
- 2. **Divide** the space for approximation.
 - a. Recursive subdivision of the space.
 - b. Near and far particles.
 - c. Store total mass at the centre-of-mass.

1. View **kernel matrix** as a similarity graph.

a. In KPCA all-pairs distances are captured.

2. Need to **sparsify** the kernel matrix.

a. Prune neighbours in tree construction.

3. Other versions of the similarity graph results in different embeddings.

4. **UMAP** similarity graph.

- a. Only store the "nearest" d neighbours distances.
- b. Perform a second optimisation for **graph layout**.
- c. Results in **manifolds** where data is uniformly distributed.

- 1. View **kernel matrix** as a similarity graph.
 - a. In KPCA all-pairs distances are captured.
- 2. Need to **sparsify** the kernel matrix.
 - a. Prune neighbours in tree construction.
- 3. Other versions of the similarity graph results in different embeddings.
- 4. **UMAP** similarity graph.
 - a. Only store the "nearest" d neighbours distances.
 - b. Perform a second optimisation for graph layout.
 - c. Results in **manifolds** where data is uniformly distributed.

- 1. View **kernel matrix** as a similarity graph.
 - a. In KPCA all-pairs distances are captured.
- 2. Need to **sparsify** the kernel matrix.
 - a. Prune neighbours in tree construction.
- 3. Other versions of the similarity graph results in different **embeddings**.
- 4. **UMAP** similarity graph.
 - a. Only store the "**nearest**" d neighbours distances.
 - b. Perform a second optimisation for graph layout.
 - c. Results in **manifolds** where data is uniformly distributed.

- 1. View **kernel matrix** as a similarity graph.
 - a. In KPCA all-pairs distances are captured.
- 2. Need to **sparsify** the kernel matrix.
 - a. Prune neighbours in tree construction.
- 3. Other versions of the similarity graph results in different embeddings.
- 4. **UMAP** similarity graph.
 - a. Only store the "**nearest**" d neighbours distances.
 - b. Perform a second optimisation for graph layout.
 - c. Results in **manifolds** where data is uniformly distributed.

- 1. Remove the assumptions of **specifying** out a kernel.
 - a. Learn it from the data!
- 2. Enter the **autoencoder**.
 - a. Many different **flavours**: fully connected, convolutional, variational, ...
- 3. Convert convolutions to xGEMM.
 - a. Need **multiple** of these small matrix multiplies.
 - b. Batched xGEMM.
- 4. Kernel fusion.
 - a. Fuse all **elementwise** operations (e.g. ReLU, sigmoid, ...).

- 1. Remove the assumptions of **specifying** out a kernel.
 - a. Learn it from the data!
- 2. Enter the **autoencoder**.
 - a. Many different **flavours**: fully connected, convolutional, variational, ...
- 3. Convert convolutions to xGEMM.
 - a. Need **multiple** of these small matrix multiplies.
 - b. Batched xGEMM.
- 4. Kernel fusion.
 - a. Fuse all **elementwise** operations (e.g. ReLU, sigmoid, ...).

Convolutional Autoencoder

Image source: analyticsindiamag, "How to implement Convolutional Autoencoder in PyTorch with CUDA"

- 1. Remove the assumptions of **specifying** out a kernel.
 - a. Learn it from the data!
- 2. Enter the **autoencoder**.
 - a. Many different **flavours**: fully connected, convolutional, variational, ...
- 3. Convert **convolutions** to **xGEMM**.
 - a. Need **multiple** of these small matrix multiplies.
 - b. Batched xGEMM.

4. Kernel fusion.

a. Fuse all **elementwise** operations (e.g. ReLU, sigmoid, ...).

Convolutions as xGEMM

Dongarra et al.. "Optimised Batched Linear Algebra for Modern Architectures" (2017) Yang, Lu, Wang. "A batched GEMM optimisation framework for deep learning" (2022)

- 1. Remove the assumptions of **specifying** out a kernel.
 - a. Learn it from the data!
- 2. Enter the **autoencoder**.
 - a. Many different **flavours**: fully connected, convolutional, variational, ...
- 3. Convert **convolutions** to **xGEMM**.
 - a. Need **multiple** of these small matrix multiplies.
 - b. Batched xGEMM.
- 4. Kernel fusion.
 - a. Fuse all **elementwise** operations (e.g. ReLU, sigmoid, ...).