
ORNL is managed by UT-Battelle LLC for the US Department of Energy

Profiling on HPC Systems

Presented by Nick Hagerty to CSE 6230 at GATech February 14, 2023
Contact: hagertynl@ornl.gov (HAGERTYNL@ORNL.gov)

22

Who am I?

Me, June 2021

• Nick Hagerty, BS, MS in Computer Science, Miami
(OH) University ’21

• Interned at Air Force Research Laboratory in
Dayton, OH in computational chemistry 2019-2021

• Joined Oak Ridge National Laboratory in June 2021

Mt LeConte,
GSMNP, TN

33

What is profiling?

• Gathers information about the time and resources each routine
within a program consumes

• Goals:
• Identify resource-consuming routines to support improving the

code base
• Demonstrate program efficiency

• Available Methods (some of them):
• Linux – perf stat
• AMD – rocprof, omniperf
• HPE – perftools
• NVIDIA – nvprof, ncu
• Others: HPCToolkit, Apex

Notation remark:

Flops, flops : floating-point
operations

FLOPS, FLOPs : floating-point
operations per second

44

Why profile?

• Moore’s Law is at a transition
• Impractical to build larger & larger

machines – power, cooling,
networking, space

• Application speed-up must rely less on
hardware improvement, more on
improving algorithms
• Profiling & optimization

55

Where we’re going with this

• CPU-based profiling: perf stat

• GPU-based profiling
• Introduction: matrix addition
• Basic Roofline model
• Ramping up the flops: matrix multiplication
• Improving matrix multiplication
• Hierarchical Roofline model

• Demo – GPU stencil

66

Dipping our toes in – perf stat
• Linux – perf stat
• Good for basic CPU-based profiling

• Test case: NxN square matrix addition, C = A+B
• Row-major and column-major experiments

• Storing an array in memory:

matrix =

width (n)

height (m)

matrix.at(x,y) = matrix[y * n + x]

77

Dipping our toes in – perf stat
• Column-major matrix addition:

matrix =

width (n)

height (m)

for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
// inner-most loop changes
// which row we select from
// ie – move column-by-column
C[j * n + i] = A[j * n + i]

+ B[j * n + i]
}

}

88

Dipping our toes in – perf stat
• Row-major matrix addition:

matrix =

width (n)

height (m)

for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
// inner-most loop changes
// which column we select from
// ie – move row-by-row
C[i * n + j] = A[i * n + j]

+ B[i * n + j]
}

}

• Memory reads are typically 64 bytes
• Reading matrix[0] likely reads matrix[1], matrix[2], and matrix[3] as well

99

Dipping our toes in – perf stat

• Linux – perf stat
• Good for basic CPU-based profiling

$ perf stat -d -d -d./matrix-add -m 8192 # These are for column-major
<application output>
Performance counter stats for ‘./matrix-add -m 8192':

3,691.58 msec task-clock:u # 1.000 CPUs utilized
0 context-switches:u # 0.000 /sec
0 cpu-migrations:u # 0.000 /sec

2,547 page-faults:u # 689.949 /sec
11,573,436,803 cycles:u # 3.135 GHz (83.31%)

211,027,746 stalled-cycles-frontend:u # 1.82% frontend cycles idle (83.31%)
7,090,183 stalled-cycles-backend:u # 0.06% backend cycles idle (83.31%)

11,355,480,740 instructions:u # 0.98 insn per cycle
0.02 stalled cycles per insn (83.31%)

2,280,658,033 branches:u # 617.801 M/sec (83.38%)
27,428 branch-misses:u # 0.00% of all branches (83.37%)

…many more metrics…

3.693409405 seconds time elapsed

3.576172000 seconds user
0.116005000 seconds sys Profiling of row vs column-major matrix

addition. 50% indicates identical
values for both

1010

Checkpoint 1

• Any questions?
• Matrix storage in memory
• Column-major vs row-major addition
• perf stat

1111

The architectures we’ll use - GPU

Simplified diagram of one AMD
MI250X Graphics Compute Die (GCD)

L2 Cache & Controller

HB
M

 C
tlr

HBM
 C

tlr

HB
M

HB
M

HBM
HBM

Shader
Engine

(28x CU)

Shader
Engine

(28x CU)

Shader
Engine

(28x CU)

Shader
Engine

(28x CU)

• Profiling in these slides was done
using one Graphics Compute Die
(GCD) of an AMD MI250X
• One AMD MI250X contains 2

GCDs, seen as logical GPUs by
the runtime environment

1212

Jumping off the deep end – GPU profiling

• GPU profilers analyze the exact instructions queued and resources
consumed by a GPU kernel

• Starting at the bottom – rocprof (AMD GPU)
• Powerful GUI-less primitive profiler

• Each GPU vendor/architecture has a slightly different name for instructions

Operation AMD MI250X
64-bit floating point addition SQ_INSTS_VALU_ADD_F64*
32-bit floating point multiply SQ_INSTS_VALU_MUL_F32*
32-byte read from HBM TCC_EA_RDREQ_32B_sum**

* These instructions are per-wavefront, so they are
multiplied by 64
** There are multiple lanes that access HBM, so we sum
across these lanes

1313

A basic rocprof example – matrix addition
• Matrix addition: C=A+B
• Testing both column-major and row-major

• Storing a matrix in memory:

matrix =

width (n)

height (m)

matrix.at(x,y) = matrix[y * n + x]

1414

A basic rocprof example – matrix addition
The kernel:

// for an n x n square matrix
template<typename T>
__global__ void matrix_add(const T* a, const T* b, T* c, int n,

int col_major) {
int row = blockIdx.y * blockDim.y + threadIdx.y;
int col = blockIdx.x * blockDim.x + threadIdx.x;
if (row < n && col < n) {
if (!col_major) {
int x = row * n + col;
c[x] = a[x] + b[x];

} else {
// then switch row & column
int x = col * n + row;
c[x] = a[x] + b[x];

}
}

}

blockDim.x

blockDim.y

blockIdx.x

blockIdx.y
threadIdx.{x,y}

1515

A basic rocprof example – matrix addition

How the kernel is launched for an n x n matrix:

int tpb = 16; // tpb^2 must be < max_threads_per_block (compiler flag)
int block_size = ceil((double) n / (double) tpb);

// Row-major
hipLaunchKernelGGL(matrix_add<T>, dim3(block_size, block_size, 0),

dim3(tpb, tpb, 0), 0, 0, a, b, c, n, 0);
// Cow-major
hipLaunchKernelGGL(matrix_add<T>, dim3(block_size, block_size, 0),

dim3(tpb, tpb, 0), 0, 0, a, b, c, n, 1);

1616

A basic rocprof example – matrix addition
• Matrix addition: C=A+B
• Testing both column-major and row-major

• Gather all metrics for HBM and L2 cache, Vector-ALU FP64 usage
Example rocprof input file (line-wrapped for viewing):

pmc : TCC_EA_RDREQ_32B_sum TCC_EA_RDREQ_sum TCC_EA_WRREQ_sum

TCC_EA_WRREQ_64B_sum SQ_INSTS_VALU_ADD_F64
SQ_INSTS_VALU_MUL_F64 SQ_INSTS_VALU_FMA_F64
SQ_INSTS_VALU_TRANS_F64

pmc : TCC_READ_sum TCC_WRITE_sum
TCP_TCC_READ_REQ_sum TCP_TCC_WRITE_REQ_sum

gpu : 0
kernel: matrix_add

Each `pmc :` line generates 1 application re-run*.

*When the user wants more metrics than the profiler can handle at once,
the application is re-run.

1717

A basic rocprof example – matrix addition

Launch command:
$ srun –N 1 –n 1 --gpus=1 rocprof –i rocprof.input.txt \

--timestamp on –o profile.madd.csv ./matrix_add_gpu

Content of profile.madd.csv:
Index,KernelName,…,TCC_EA_RDREQ_32B_sum,TCC_EA_RDREQ_sum,…
2,"void matrix_add<double>(double const*,…)",…,0,67114780,…
<one row for each kernel>

• What can we do with these results?
• With simple kernels, validating that profiling matches expectation
• If you use a 1GB matrix, make sure your bytes read is about 2x 1GB
• Calculate floating-point performance (Flops per second)

• Check caching, register pressure, shared memory usage
• For complex kernels, roofline profiling is a good model of performance

1818

A basic rocprof example – matrix addition
Validation

Bytes Read from HBM:
ideal read: 2x 4096x4096 matrices of doubles = 268.4 MB // for A & B

// compute number of bytes read from HBM
bytes_read = 32 * TCC_EAC_RDREQ_32B_sum +

64 * (TCC_EA_RDREQ_sum – TCC_EA_RDREQ_32B_sum)
// avg over last 3 kernel invocations:
bytes_read_rowmajor = 281.7 MB
bytes_read_colmajor = 283.0 MB

Flops:
flops_fp64 = 64 * (SQ_INSTS_VALU_ADD_F64 + SQ_INSTS_VALU_MUL_F64 +

SQ_INSTS_VALU_TRANS_F64 + 2*SQ_INSTS_VALU_FMA_F64)
time = (CompleteNs – BeginNs) / power(10, 9)
flops_per_s = flops_fp64 / time
// avg over last 3 kernel invocations
flops_per_s_rowmajor = 20.93 GFLOPs
flops_per_s_colmajor = 16.16 GFLOPs

1919

A basic rocprof example – matrix addition

• What conclusions can we draw from this?
• Row-major matrix addition performed almost 30% better than column-

major, but the bytes read from HBM were very similar – how can we
explain this performance difference?

Action items:
1. We should look at the LDS, L1 & L2 cache activity now, since HBM usage

doesn’t show anything significant
2. We have no idea if 21 GFLOPs is any good on the current hardware

a. This is often the case when profiling complex kernels

2020

A basic rocprof example – matrix addition
Checking L2 cache operations

Bytes to/from L2 cache controller:
ideal read: 2x 4096x4096 doubles = 268.4 MB // for A & B
ideal write: 1x 4096x4096 doubles = 134.2 MB // for C

// compute number of bytes read/written
bytes_read* = 64 * TCP_TCC_READ_REQ_sum
bytes_write = 64 * TCP_TCC_WRITE_REQ_sum

// avg over last 3 kernel invocations:
bytes_read_rowmajor = 353.1 MB
bytes_read_colmajor = 353.7 MB

bytes_write_rowmajor = 176.6 MB
bytes_write_colmajor = 282.5 MB

*AMD MI250X can send 2 64-byte reads as one 128-byte read

row-major sends 30%
of it’s reads in 128-byte
chunks, vs 0.01% for
column-major

2121

Introduction to Roofline Modeling

• A Roofline model[1] plots floating-point
performance as a function of arithmetic
(or operational) intensity
• Your performance is dependent on

required bytes from memory/cache

• Example: Crusher – an AMD MI250X-
powered test & development system at
ORNL[1]

[1] Williams, S., et al. Communications of the ACM, volume 52, pages 65–76, April 2009.
[2] https://docs.olcf.ornl.gov/systems/crusher_quick_start_guide.html

FLOPS_peak = min(ArithmeticIntensity * Bandwidth_HBM,
theoretical_peak_flops)

AI

2222

Introduction to Roofline Modeling – matrix addition
// compute number of bytes read & written from HBM (excludes caching)
bytes_total = (32 * TCC_EAC_RDREQ_32B_sum +

64 * (TCC_EA_RDREQ_sum – TCC_EA_RDREQ_32B_sum))
+ (64 * TCC_EA_WRREQ_64B_sum +

32 * (TCC_EA_WRREQ_sum – TCC_EA_WRREQ_64B_sum))

Flops:
flops_fp64 = 64 * (SQ_INSTS_VALU_ADD_F64 + SQ_INSTS_VALU_MUL_F64 +

SQ_INSTS_VALU_TRANS_F64 + 2*SQ_INSTS_VALU_FMA_F64)
time = (CompleteNs – BeginNs) / power(10, 9)

ArithmeticIntensity = flops_fp64 / bytes_total
flops_per_s = flops_fp64 / time

Alignment AI (Flops/Byte) Performance
(GFLOPs)

Theoretical Peak
(GFLOPs)

Column 0.0408 16.16 65.28
Row 0.0419 20.93 67.04

2323

Introduction to Roofline Modeling – matrix addition

Alignment AI
(Flops/Byte)

Performance
(GFLOPs)

Theoretical
Peak
(GFLOPs)

Column 0.0408 16.16 65.28

Row 0.0419 20.93 67.04

• Achieved about 30% of peak at the
given AI for row-major addition

• Theoretical peak determined by
formula below:

FLOPS_peak = min(ArithmeticIntensity * Bandwidth_HBM,
theoretical_peak_flops)

2424

Checkpoint 2

• Any questions?
• Matrix addition on the GPU
• rocprof introduction
• Roofline model introduction

2525

Ramping up the Flops – matrix multiplication

• Matrix addition: C = AxB
• If A is n x k and B is k x m, then:
• C is n x m, each position in C requires the sum of k multiplications

(the dot product of each column of B, row of A)

2626

Ramping up the Flops – matrix multiplication

N (N x N
matrix)

AI
(Flops/Byte)

Performance
(GFLOPs)

Roofline
Peak
(GFLOPs)

1024 21.06 644.63 23900

2048 4.06 631.72 6496

4096 3.78 618.59 6048

• For a matrix multiply, this doesn’t look
very good – even at larger sizes,
achieving <3% of device capability

• Vendors will likely provide libraries for
things they want to be highly
optimized. Let’s try one - rocBLAS

2727

Ramping up the Flops – matrix multiplication

N (N x N
matrix)

AI
(Flops/Byte)

Performance
(GFLOPs)

Theoretical
Peak
(GFLOPs)

1024 42.00 8822.32 23900

2048 47.44 11017.20 23900

4096 35.77 12337.90 23900

• This looks much better
• >10x floating-point performance
• >50% device peak at largest size

2828

Types of Flops – matrix multiplication

• The AMD MI250X provides Matrix cores, which are highly optimized to
do matrix operations, instead of the standard vector-ALU

Method ADD_F64* MUL_F64 FMA_F64 TRANS_F64 MFMA_MOPS_F64 Total GFlops

rocBLAS 0 0 0 0 4194304 1.07**

naive 0 16384 16793600 0 0 2.15

*all metric names above are prefixed with `SQ_INSTS_VALU_` in `rocprof`
**F64 matrix operations are multiplied by 256 to compute the number of performed Flops

At its core, the naïve algorithm has the following line of code to
compute a dot-product:

value += d_b[r * k + k_idx] * d_a[k_idx * n + c];

This is considered a fused multiply-add operation (double the Flops!!)

2929

Types of Flops – matrix multiplication

• The AMD MI250X provides Matrix cores, which are highly optimized to
do matrix operations, instead of the standard vector-ALU

Method ADD_F64* MUL_F64 FMA_F64 TRANS_F64 MFMA_MOPS_F64 Total GFlops

rocBLAS 0 0 0 0 4194304 1.07**

naive 0 16384 16793600 0 0 2.15

*all metric names above are prefixed with `SQ_INSTS_VALU_` in `rocprof`
**F64 matrix operations are multiplied by 256 to compute the number of performed Flops

At its core, the naïve algorithm has the following line of code to
compute a dot-product:

value += d_b[r * k + k_idx] * d_a[k_idx * n + c];

This is considered a fused multiply-add operation (double the Flops!!)

Matrix cores have a higher peak
than vector-ALU can achieve –
roofline plot needs to be updated

3030

Ramping up the Flops – matrix multiplication

N (N x N
matrix)

AI
(Flops/Byte)

Performance
(TFLOPs)

Theoretical
Peak
(TFLOPs)

1024 42.00 8.82 23.95 47.9

2048 47.44 11.02 23.95 47.9

4096 35.77 12.34 23.95 47.9

• MI250X provides 2x more theoretical
FLOPs for Matrix-FMA instructions

3131

Quick note - Hierarchical Roofline models

• A Hierarchical Roofline model[1]
does the same thing as a traditional
roofline, but taking into account
device caches

• In the rest of this talk, we’re going to
add the L2 cache in
• All HBM traffic will pass through the L2

cache, so it is accounted for in that total

[1] C. Yang, etc al. Concurrency Computational Pract and Exper 2020. doi: 10.1002/cpe.5547

3232

Checkpoint 3

• Any questions?
• Matrix multiplication on the GPU
• RocBLAS Matrix multiplication
• AMD Matrix cores
• Hierarchical Roofline model

3333

Profiling & Optimization Demo – stencil - image blurring

• 2-D spatial averaging

Input: Output:

AVERAGE

Radius

3434

Demo – stencil - image blurring

• CPU implementation:

// ignore edges

for (size_t i = RADIUS + 1; i < n - RADIUS; i++) {

for (size_t j = RADIUS + 1; j < n - RADIUS; j++) {

T host_sum = 0;

for (int i_offset = -RADIUS; i_offset <= RADIUS; i_offset++) {

for (int j_offset = -RADIUS; j_offset <= RADIUS; j_offset++) {

host_sum += a_host[(i + i_offset) * n + (j + j_offset)];

}

}

T host_avg = host_sum / ((RADIUS * 2 + 1) * (RADIUS * 2 + 1));

// use host_avg to check correctness of GPU-generated answer

}

}

*keywords like __restrict__ and const are removed for viewing

3535

Demo – stencil - image blurring

• Naïve GPU implementation:

template<typename T>

__global__ void image_blur(T* a, T* b, int n, int m) {

int row = blockIdx.y * blockDim.y + threadIdx.y;

int col = blockIdx.x * blockDim.x + threadIdx.x;

if (row > RADIUS && col > RADIUS && row < m - RADIUS && col < n - RADIUS) {

for (int i_offset = -RADIUS; i_offset <= RADIUS; i_offset++) {

for (int j_offset = -RADIUS; j_offset <= RADIUS; j_offset++) {

b[row * n + col] += a[(row + i_offset) * n + (col + j_offset)];

}

}

b[row * n + col] /= ((RADIUS * 2 + 1) * (RADIUS * 2 + 1));

}

}

*keywords like __restrict__ and const are removed for viewing

3636

Demo – stencil - image blurring

• Naïve GPU implementation:

template<typename T>

__global__ void image_blur(T* a, T* b, int n, int m) {

int row = blockIdx.y * blockDim.y + threadIdx.y;

int col = blockIdx.x * blockDim.x + threadIdx.x;

if (row > RADIUS && col > RADIUS && row < m - RADIUS && col < n - RADIUS) {

for (int i_offset = -RADIUS; i_offset <= RADIUS; i_offset++) {

for (int j_offset = -RADIUS; j_offset <= RADIUS; j_offset++) {

b[row * n + col] += a[(row + i_offset) * n + (col + j_offset)];

}

}

b[row * n + col] /= ((RADIUS * 2 + 1) * (RADIUS * 2 + 1));

}

}

*keywords like __restrict__ and const are removed for viewing

For simplicity, disregard edges

Sum of area

3737

Demo – stencil - image blurring

• Results:

Metric Value(Naïve)
Bytes_L2 9.13 GB

L2 cache hit (%) 29.4%

AI_L2 0.68

FLOPs 742 GF/s

3838

Profiling & Optimization Demo – stencil - image blurring

• Let’s expand the picture… Notice how in each block, each space is read
multiple times?

Blocks sub-dividing the matrix

Each space will need to be
read by each of its neighbors

If radius == 1, each block is
read 9x

3939

Profiling & Optimization Demo – stencil - image blurring

• Architecture diagram of a single Compute Unit:

An MI250X contains 16kB of L1 cache,
shared by the entire wavefront
- Variables move in & out of L1 cache

An MI250X contains 64kB of local data share
(LDS), shared by the entire wavefront
- Designed for sharing constant values with
other threads across a wavefront

4040

Profiling & Optimization Demo – stencil - image blurring

• How we store this in LDS

Load the entries for each
block, plus their surrounding
neighbors, into matrix in LDS

4141

Demo – stencil - image blurring

• LDS-utiliziing implementation:
__global__ void image_blur(T* a, T* b, int n, int m) {

__shared__ T a_lds[(THR_PER_BLOCK_X + 2 * RADIUS) * (THR_PER_BLOCK_Y + 2 * RADIUS)],

b_lds[THR_PER_BLOCK_X * THR_PER_BLOCK_Y];

// omitted - load shared data - ~50 lines of code to cover edge cases

if (row >= RADIUS && col >= RADIUS && row < m - RADIUS && col < n - RADIUS) {

b_lds[threadIdx.y * THR_PER_BLOCK_X + threadIdx.x] = 0.0;

for (int i_offset = -RADIUS; i_offset <= RADIUS; i_offset++) {

for (int j_offset = -RADIUS; j_offset <= RADIUS; j_offset++) {

b_lds[threadIdx.y * THR_PER_BLOCK_X + threadIdx.x] +=

a_lds[(threadIdx.y + RADIUS + i_offset) * a_lds_dimx

+ (threadIdx.x + RADIUS + j_offset)];

}

}

b[row * n + col] = b_lds[threadIdx.y * THR_PER_BLOCK_X + threadIdx.x] / (T) num_squares;

*keywords like __restrict__ and const are removed for viewing

block-local
indexing

__shared__ requires dimensions
known at compile-time (#define)

4242

Demo – stencil - image blurring

• Result:
• Increased Arithmetic Intensity

• 23% fewer bytes requested from
L2 cache

• Increased Flop rate
• Exact same number of Flops

Metric Naïve LDS-enabled
Bytes_L2 9.13 GB 6.98 GB

L2 cache hit (%) 29.4% 38.4%

AI_L2 0.68 0.89

FLOPs 742 GF/s 955 GF/s

Bytes_LDS 0 B 5120 B

4343

Demo – stencil - image blurring

• Result:
• Increased Arithmetic Intensity

• 23% fewer bytes requested from
L2 cache

• Increased Flop rate
• Exact same number of Flops

Metric Naïve LDS-enabled
Bytes_L2 9.13 GB 6.98 GB

L2 cache hit (%) 29.4% 38.4%

AI_L2 0.68 0.89

FLOPs 742 GF/s 955 GF/s

Bytes_LDS 0 B 5120 B
By sending 5KB to LDS, we saved 2GB of reads to L2

4444

Demo – stencil - image blurring

• Result:
• Increased Arithmetic Intensity

• 23% fewer bytes requested from
L2 cache

• Increased Flop rate
• Exact same number of Flops

Metric Naïve LDS-enabled
Bytes_L2 9.13 GB 6.98 GB

L2 cache hit (%) 29.4% 38.4%

AI_L2 0.68 0.89

FLOPs 742 GF/s 955 GF/s

Bytes_LDS 0 B 5120 B
What happens if we increase the radius?

4545

Demo – stencil - image blurring

• Result:
• Higher AI for both naïve and LDS-

enabled
• No performance gain for naïve kernel,

drastically improved performance
(+57%) for LDS-enabled kernel

Metric LDS R=1 LDS R=2
Bytes_L2 6.98 GB 7.52 GB

L2 cache hit
(%)

38.4% 42.6%

AI_L2 0.89 Flops/B 1.39 Flops/B

FLOPs 955 GF/s 1498 GF/s

Bytes_LDS 5120 B 5632 B

4646

Outcomes

• Some helpful tips to keep in mind:
• Know your hardware!

• Utilize LDS, matrix cores, whatever your architecture can provide you. Matrix
cores may be specific to AMD, but LDS is common

• Mind your memory
• Minimizing off-chip (HBM) reads can help improve performance, but doesn’t

always tell the full picture. Feel free to check L2 cache as well. Try to use
algorithms that take advantage of the storage of the data structure

• Reduce the Flops
• When possible, use algebra to simplify the math required (we didn’t cover

an example of this today)

4747

Internships & Jobs

• Pathways to Computing Internship:
– https://education.ornl.gov/pathways/

• Find open job postings:
– https://jobs.ornl.gov

https://education.ornl.gov/pathways/
https://jobs.ornl.gov/

Frontier fun facts

4949

1.1 Exa-FLOPS (floating-point operations)

1 quintillion (1018) calculations per second

4 years, if everyone on the earth did 1 calculation per second

which
takes

5050

Each cabinet
weights 8,000 lbs –
weight of 2 F150’s
(74 cabinets total)

$0.03 out of every $1
spent to power the
machine, to cool it

6000 gallons of water
moved per minute. Fills
an Olympic-size
swimming pool in 30
minutes

700 PB storage holds
about 35x more data
than the Library of
Congress

