
MPI Introduction
Ramakrishnan(Ramki) Kannan

Shruti Shivakumar
Motivated out to LLNL MPI Tutorial, OLCF MPI Tutorial, SC22 Parallel

Computing 101 Tutorial

A General HPC Architecture

Shared Memory concept within a node
plus Distributed Memory concept: Non-local data can
be sent across the network to other CPUs

HPC Architectures with Accelerators

Shared Memory within a node with CPUs and GPUs
plus Distributed Memory concept: Non-local data can
be sent across the network to other CPUs

Frontier System

Report on ORNL Frontier System – Jack Donggarra and Al Geist https://icl.utk.edu/files/publications/2022/icl-utk-1570-2022.pdf

May 30, 2022 3

Figure 2: Four Generations of Supercomputers at ORNL

Figure 3: Specifications for ORNL’s Titan, Summit, and Frontier Systems

Node 1 - AMD EPYC 7A53 64 Cores CPU
& 4 - AMD Instinct MI250X GPUs

Nodes per Blade - 2
Nodes per Cabinet - 128
Total cabinets - 74
Nodes per System – 9408
Total system memory: 9.2 PB (4.6 PB
HBMe2 + 4.6 PB DDR4)
Total on-node NVM - 37 PB (66 TB/s
read, 62 TB/s write)
Memory Bandwidth between HBM2e
and each GPU - 3,200 GB/s (3.2 TB/s)
Memory Bandwidth between DDR4 and
the CPU - 205 GB/s
Bandwidth between CPU and GPU -
288 GB/s

May 30, 2022 11

Figure13: Frontier Compute Blade made up of 2 nodes

Figure14: One Rack Containing 64 Blades (128 nodes)

May 30, 2022 11

Figure13: Frontier Compute Blade made up of 2 nodes

Figure14: One Rack Containing 64 Blades (128 nodes)

May 30, 2022 11

Figure13: Frontier Compute Blade made up of 2 nodes

Figure14: One Rack Containing 64 Blades (128 nodes)

8 compute
blades

One Compute Blade

May 30, 2022 10

Front of the cabinet shows all water cooling lines. Red and Blue lines are the hot and cold water
lines. The silver marks above the cooling lines are the removal handle for each node.

Figure 11: Read View with Doors Off; Rear of cabinet has power and all the interconnect wiring.

Figure 12: One row of the Frontier System as Installed at DOE's ORNL

Frontier System

Programming HPC Systems with Accelerators

• CPU Core parallelism – OpenMP
• Distributed parallel programming across Nodes -- MPI
• GPU Accelerator Programming – CUDA

Message Passing Interface (MPI)

• Communication standard
• MPI 1.0 was first introduced in 1994
• Works both on distributed and shared memory
• MPI 4.1 – May 2022
• This tutorial is about gentle introduction to complex MPI
• https://hpc-tutorials.llnl.gov/mpi/
• Code examples - https://github.com/mpitutorial/mpitutorial

https://hpc-tutorials.llnl.gov/mpi/

Why MPI?

• Distributed memory model
• Provides mechanisms to move data among disjoint processes
• Can still be used within a node, but other strategies might be better (e.g. OpenMP

• Requires explicit code for parallelism
• No magic from the compiler
• No transparent large arrays spanning processes for example

• Why should I use MPI?
• Many different alternate DM programming models exist – Map-reduce
• Standardized - All HPC vendors support MPI; most scientific/HPC libraries support

MPI; most parallel codes use MPI
• Portable - MPI defines an API, so as long your code is MPI compliant and your

implementation is too, your MPI parts should be portable
• Functionality - Well over 400 routines
• Performance - Implementations are encouraged to optimize for performance

Many different implementations

• OpenMPI
• MPICH
• Many vendors provided
• IBM Spectrum MPI
• Cray-MPICH

• C/C++, python and Fortran

Different MPI Functionalities

• Point-2-Point communications
• Collective Communications
• MPI-IO
• Tools Interface
• One sided message passing
• Derived Datatypes

Programming introduction

• Mpi.h
• Mpicc

int main(int argc, char** argv) {
// Initialize the MPI environment. The two arguments to MPI Init are not
// currently used by MPI implementations, but are there in case future
// implementations might need the arguments.
MPI_Init(NULL, NULL);

// Get the number of processes
int world_size;
MPI_Comm_size(MPI_COMM_WORLD, &world_size);

// Get the rank of the process
int world_rank;
MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);

// Do something here.

// Finalize the MPI environment. No more MPI calls can be made after this
MPI_Finalize();
}

Point to Point communication
• MPI provides four variants on send with blocking and nonblocking versions

of each.
• Blocking means the call will not complete until the local data is safe to

modify
• Nonblocking means the call returns “immediately”

• Nonblocking data movement calls in MPI are MPI_I{command}, e.g. MPI_Irecv() or
MPI_Ialltoallv() (capital “Eye”)

• Nonblocking calls require a mechanism to tell when they are done – MPI_Wait*,
MPI_Test*

• Data may or may not actually move before a call to MPI_Wait*/MPI_Test*
• It is not safe to reuse buffers until the Wait/Test says the operation is locally done.
• Nonblocking calls (can) allow for compute and communication to overlap

Three Illustrations

• Point to point send and receive
• Ping pong – Two people sending back and forth messages
• Ring – A broadcast variant

Deadlocks

• Blocking point-to-point calls make it possible to deadlock a program

• Use nonblocking calls
• Have odd numbered processes post Sends first
• Use MPI_Sendrecv() call

Process 0 Process 1

MPI_Recv(from process 1)
MPI_Send(to process 1)

MPI_Recv(from process 0)
MPI_Send(to process 0)

Different Send and Receive TypesMPI Communication: Two Possibilities
Small messages make use of system-supplied buffer

Large messages need user-supplied receive buffer

Stout and Jablonowski – p. 64/237

https://iamsorush.com/posts/mpi-send-types/ - For different

When do you call a send is complete?
1. Once I call MPI Library (MPI_Isend). I don’t care what MPI does
2. When MPI library gave it to Network layer? (MPI_Bsend)
3. When a receiver identified to receive the data? (MPI_send)
4. When the receiver got the data? (MPI_Ssend)
5. And other complex combinations.

https://iamsorush.com/posts/mpi-send-types/

Non-blocking send and receive
• MPI_ISEND(), MPI_IRECV(), MPI_WAIT()
• MPI_WAIT is a blocking call –

(MPI_ISEND + MPI_WAIT = MPI_SEND)
• We can check if we the call is completed

and the data is obtained with a test call
– MPI_Test(). If the flag is true, the call is
complete. While(MPI_Test()) is same as
MPI_Wait()

• Non-blocking operation is slightly
complicated. But boosts performance

• Mainly used for look-ahead techniques –
overlapping compute and
communication.

MPI_Request reqs[4]; // required variable for non-
blocking calls
MPI_Status stats[4]; // required variable for Waitall
routine
// determine left and right neighbors
prev = rank - 1;
next = rank + 1;
if (rank == 0)
prev = numtasks - 1;
if (rank == (numtasks - 1))
next = 0;
// post non-blocking receives and sends for neighbors
MPI_Irecv(&buf[0], 1, MPI_INT, prev, tag1,
MPI_COMM_WORLD, &reqs[0]);
MPI_Irecv(&buf[1], 1, MPI_INT, next, tag2,
MPI_COMM_WORLD, &reqs[1]);

MPI_Isend(&rank, 1, MPI_INT, prev, tag2,
MPI_COMM_WORLD, &reqs[2]);
MPI_Isend(&rank, 1, MPI_INT, next, tag1,
MPI_COMM_WORLD, &reqs[3]);

// do some work while sends/receives progress in
background

// wait for all non-blocking operations to complete
MPI_Waitall(4, reqs, stats);

Collective Communication
• One process wants to communicate with multiple process
• One Process to all other process

MPI_All*

MPI_*v class

• Scatterv, gatherv, allgatherv, alltoallv, alltoallw
• Each process can contribute a different amount of data
• Take an array of counts and an array of displacements (distance

between each element)
• These function calls can be very expensive for memory and data

movement – Alltoallv requires 4 arrays of size(commsize) ints, plus
the actual data

Scatterv example

43 Intro to HPC Workshop – Intro to MPI

Scatterv

Rank 0 (also the root) Recvbuf 0,1

Rank 1 Recvbuf 4,5,6,7

Rank 2 Recvbuf 16,17,18,19,20,21

Rank 3 Recvbuf 32,33,34,35,36,37,38,39

Counts: 2,4,6,8 Disps: 0, 4, 16, 32 Recv: 2*(myrank+1)

0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39

sdisp[0]=0
sdisp[1]=4 sdisp[2]=16 sdisp[3]=32

scount[0]=2

scount[1]=4
scount[2]=6 scount[3]=8

MPI Communicator Split // Get the rank and size in the original
communicator
int world_rank, world_size;
MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);
MPI_Comm_size(MPI_COMM_WORLD, &world_size);

int color = world_rank / 4; // Determine color
based on row

// Split the communicator based on the color and
use the original rank for ordering
MPI_Comm row_comm;
MPI_Comm_split(MPI_COMM_WORLD, color, world_rank,
&row_comm);

int row_rank, row_size;
MPI_Comm_rank(row_comm, &row_rank);
MPI_Comm_size(row_comm, &row_size);

printf("WORLD RANK/SIZE: %d/%d --- ROW RANK/SIZE:
%d/%d\n",
world_rank, world_size, row_rank, row_size);

MPI_Comm_free(&row_comm);

MPI_Finalize();

