MPI Introduction

Ramakrishnan(Ramki) Kannan
Shruti Shivakumar

Motivated out to LLNL MPI Tutorial, OLCF MPI Tutorial, SC22 Parallel
Computing 101 Tutorial

A General HPC Architecture

Multiple CPU cores on each compute node share memory

\ 4

Shared Memory concept within a node

plus Distributed Memory concept: Non-local data can
be sent across the network to other CPUs

HPC Architectures with Accelerators

Shared Memory Nodes may be heterogeneous (CPU cores and GPUs

4

3 OAK RIDGE
Nati¢ nal Labor: tory

Deverey T f(‘y_jl'(I

‘ =AY et —

network
GPU GPU
GPU GPU

Shared Memory within a node with CPUs and GPUs

plus Distributed Memory concept: Non-local data can
be sent across the network to other CPUs

Frontier System
e s Jeeeesw e

Peak

nodes

Node

Memory

On-node
interconnect

System
Interconnect
Topology

Storage

Power

27 PF
18,688

1 AMD Opteron CPU
1 NVIDIA Kepler GPU

0.6 PB DDR3 +
0.1 PB GDDR

PCIl Gen2
No coherence
across the node

Cray Gemini network
6.4 GB/s

3D Torus
32 PB, 1 TB/s,

200 PF
4,608

2 IBM POWERS™ CPUs
6 NVIDIA Volta GPUs

24 PBDDR4 + 0.4 HBM +
7.4 PB On-node storage

NVIDIA NVLINK
Coherent memory
across the node

Mellanox Dual-port EDR IB
25 GB/s

Non-blocking Fat Tree

250 PB, 2.5 TB/s, IBM Spectrum
Scale™ with GPFS™

13 MW

2 EF
9408

1 AMD EPYC CPU
4 AMD Radeon Instinct GPUs

46 PB DDR4 + 46 PB HBM2e +

36 PB On-node storage, 66 TB/s Read 62 TB/s Write

AMD Infinity Fabric
Coherent memory
across the node

Four-port Slingshot network
100 GB/s

Dragonfly

695 PB HDD+11 PB Flash Performance Tier,
9.4 TB/s and 10 PB Metadata Flash. Lustre

29 MW

Node 1 - AMD EPYC 7A53 64 Cores CPU
& 4 - AMD Instinct MI250X GPUs

Nodes per Blade - 2

Nodes per Cabinet - 128

Total cabinets - 74

Nodes per System — 9408

Total system memory: 9.2 PB (4.6 PB

HBMe2 + 4.6 PB DDR4)

Total on-node NVM - 37 PB (66 TB/s

read, 62 TB/s write)

Memory Bandwidth between HBM2e

and each GPU - 3,200 GB/s (3.2 TB/s)

Memory Bandwidth between DDR4 and

the CPU - 205 GB/s

Bandwidth between CPU and GPU -

288 GB/s

Report on ORNL Frontier System — Jack Donggarra and Al Geist https://icl.utk.edu/files/publications/2022/icl-utk-1570-2022.pdf

8 compute {1

Frontier System ades

Four AMD MI200 GPUs

Top view showing water cooling of all components

o0 00 0 B B
|
\
The rear has ““l““ ‘
Sli hot 11 \
C:ng:e::fofs . A ', | "’\h ’t l \i‘ \ b\lQ A\l.l‘,l‘ |

and
Power input

Front view showing thickness and
Removal handle, hot, and cold water inputs

et

|"r‘l |||||u| |

2 Slingshot 11 NICs 2 Slingshot 11 NICs Water cooled DDR4 itk) ,

AMD EPYC CPU

One Compute Blade

Programming HPC Systems with Accelerators

* CPU Core parallelism — OpenMP
* Distributed parallel programming across Nodes -- MPI
* GPU Accelerator Programming — CUDA

Message Passing Interface (MPI)

* Communication standard

* MPI 1.0 was first introduced in 1994

* Works both on distributed and shared memory

* MPl 4.1 — May 2022

* This tutorial is about gentle introduction to complex MPI
* https://hpc-tutorials.linl.gov/mpi/

* Code examples - https://github.com/mpitutorial/mpitutorial

https://hpc-tutorials.llnl.gov/mpi/

Why MPI?

* Distributed memory model

* Provides mechanisms to move data among disjoint processes
* Can still be used within a node, but other strategies might be better (e.g. OpenMP

* Requires explicit code for parallelism
* No magic from the compiler
* No transparent large arrays spanning processes for example

. Why should | use MPI?

* Many different alternate DM programming models exist — Map-reduce

 Standardized - All HPC vendors support MPI; most scientific/HPC libraries support
MPI; most parallel codes use MPI

* Portable - MPI defines an API, so as Ion%]your code is MPIl compliant and your
implementation is too, your MP] parts should be portable

* Functionality - Well over 400 routines
* Performance - Implementations are encouraged to optimize for performance

Many different implementations

* OpenMPI
* MPICH

* Many vendors provided
* IBM Spectrum MPI
* Cray-MPICH

e C/C++, python and Fortran

Different MPI| Functionalities

* Point-2-Point communications
* Collective Communications
 MPI-IO

* Tools Interface

* One sided message passing

* Derived Datatypes

Programming introduction

int main(int argc, charxx argv) {

// Initialize the MPI environment. The two arguments to MPI Init are not
// currently used by MPI implementations, but are there in case future
// implementations might need the arguments.

MPI_Init(NULL, NULL);

// Get the number of processes ° “AFN-h
int world_size; .
MPI Comm_size(MPI_COMM_WORLD, &world_size); * Mpicc

// Get the rank of the process

int world_rank;
MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);

// Do something here.

// Finalize the MPI environment. No more MPI calls can be made after this
MPI_Finalize();
}

Point to Point communication

 MPI provides four variants on send with blocking and nonblocking versions
of each.

* Blocking means the call will not complete until the local data is safe to
modify

* Nonblocking means the call returns “immediately”

Nonblocking data movement calls in MPI are MPI_l{command}, e.g. MPI_Irecv() or
MPI_lalltoallv() (capital “Eye”)

Nonblocking calls require a mechanism to tell when they are done — MPI_Wait*,
MPI_Test*

Data may or may not actually move before a call to MPI_Wait*/MPI_Test*
It is not safe to reuse buffers until the Wait/Test says the operation is locally done.
Nonblocking calls (can) allow for compute and communication to overlap

Three Illustrations

* Point to point send and receive

* Ping pong — Two people sending back and forth messages
* Ring — A broadcast variant

Deadlocks

* Blocking point-to-point calls make it possible to deadlock a program

MPI_Recv(from process 1) MPI_Recv(from process 0)
MPI_Send(to process 1) MPI_Send(to process 0)

* Use nonblocking calls
* Have odd numbered processes post Sends first
e Use MPI_Sendrecv() call

Different Send and Receive Types

When do you call a send is complete?
1. Once | call MPI Library (MPI_Isend). | don’t care what MPI does

When MPI library gave it to Network layer? (MPI_Bsend)
When a receiver identified to receive the data? (MPI_send)
When the receiver got the data? (MPI_Ssend)

And other complex combinations.

Local buffer :

Process 0 Process 1

E Local buffer

e wWN

Network

https://iamsorush.com/posts/mpi-send-types/ - For different

https://iamsorush.com/posts/mpi-send-types/

Non-blocking send and receive

MPI_ISEND(), MPI_IRECV(), MPI_WAIT()

MPI_WAIT is a blocking call —
(MPI_ISEND + MPI_WAIT = MPI_SEND)

We can check if we the call is completed
and the data is obtained with a test call
— MPI_Test(). If the flag is true, the call is
complete. While(MPI_Test()) is same as
MPI_Wait()

Non-blocking operation is slightly
complicated. But boosts performance

Mainly used for look-ahead techniques —
overlapping compute and
communication.

MPI_Request reqsl[4]; // required variable for non-
blocking calls

MPI_Status stats[4]; // required variable for Waitall
routine

// determine left and right neighbors

prev = rank - 1;

next = rank + 1;

if (rank == 0)

prev = numtasks - 1;

if (rank == (numtasks - 1))

next = 0;

// post non-blocking receives and sends for neighbors
MPI_Irecv(&buf[0], 1, MPI_INT, prev, tagl,
MPI_COMM_WORLD, &reqsl[0]);

MPI_TIrecv(&buf[1], 1, MPI_INT, next, tag2,
MPI_COMM_WORLD, &reqsl[1]);

MPI_Isend(&rank, 1, MPI_INT, prev, tag2,
MPI_COMM_WORLD, &reqsl(2]);
MPI_Isend(&rank, 1, MPI_INT, next, tagl,
MPI_COMM_WORLD, &reqsl[3]);

// do some work while sends/receives progress in
background

// wait for all non-blocking operations to complete
MPI_Waitall(4, regs, stats);

Collective Communication

* One process wants to communicate with multiple process
* One Process to all other process

gggggg

Al

MPI_Allgather

Gathers data from all tasks and then distributes to all tasks in communicator
sendcnt = 1;
recvent = 1;
MPI_Allgather(sendbuf, sendcnt, MPI_INT
recvbuf, recvcnt, MPI_INT
MPI_COMM WORLD) ;

task0 task1 task2 task3
1 2 3 4 | «—— sendbuf (before)
1 1 1 1
2 2 2 2
recvbuf (after)
3 3 3 3
4 4 4 4

MPI_Allreduce

Perform reduction and store result across all tasks in communicator
count = 1;

MPTI Allreduce (sendbuf, recvbuf, count, MPI INT,
MPI_SUM, MPI_COMM WORLD) ;

task0 task1 task2 task3

1 2 3 4 | < sendbuf (before)

10 10 10 10 | «<—— recvbuf (after)

MPI_Alltoall
Scatter data from all tasks to all tasks in communicator

sendent = 1;

recvent = 1;

MPI_Alltoall (sendbuf, sendcnt, MPI_INT
recvbuf, recvent, MPI_INT
MPI_COMM WORLD) ;

task0 task1 task2 task3
1 5 9 13
2 6 10 14
- (before)
3 7 1" 14
4 8 12 16
1 2 3 4
5 6 7 8
- buf (after)
9 10 1" 12
13 14 15 16

MPI_Reduce_scatter

Perform reduction on vector elements and distribute segments
of result vector across all tasks in communicator

recvent = 1;
MPI Reduce_ scatter(sendbuf, recvbuf, recvcount,
MPI_INT, MPI_SUM, MPI_COMM WORLD) ;

task0 task1 task2 task3
1 1 1 1
2 2 2 2
<+—— sendbuf (before)
3 3 3 3
4 4 4 4
4 8 12 16 <+—— recvbuf (after)

MPI *v class

e Scatterv, gathery, allgathery, alltoallv, alltoallw
* Each process can contribute a different amount of data

* Take an array of counts and an array of displacements (distance
between each element)

* These function calls can be very expensive for memory and data
movement — Alltoallv requires 4 arrays of size(commsize) ints, plus
the actual data

Scatterv example

Counts: 2,4,6,8 Disps: 0, 4, 16, 32 Recv: 2*(myrank+1)

0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39

T T sdisp[1]=4 T sdisp[2]=16 " sdisp[3]=32
sdisp[0]=0 ° : « > P

scount[1]=4
scount[2]=6 scount[3]=8

v

scount[0]=2

Rank O (also the root) Recvbuf 0,1

Rank 1 Recvbuf 4,5.6,7

Rank 2 Recvbuf 16,17,18,19,20,21

Rank 3 Recvbuf 32,33,34,35,36,37,38,39

MPI Communicator Split

(@O0 OO

ONONONO)

oY¥oXo¥o
0000,

Q|0
oje1ole,
O|OO/O
O|O/O®

// Get the rank and size in the original
communicator

int world_rank, world _size;
MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);

MPI_Comm_size(MPI_COMM_WORLD, &world_size);

int color = world_rank / 4; // Determine color
based on row

// Split the communicator based on the color and
use the original rank for ordering

MPI_Comm row_comm;
MPI_Comm_split(MPI_COMM_WORLD, color, world_rank,
&row_comm) ;

int row_rank, row_size;
MPI_Comm_rank(row_comm, &row_rank);
MPI_Comm_size(row_comm, &row_size);

printf("WORLD RANK/SIZE: %d/%d ——— ROW RANK/SIZE:
%d/%d\n",
world_rank, world_size, row_rank, row_size);

MPI_Comm_free(&row_comm);

MPI_Finalize();

