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Outline

» Distributed learning on modern systems (HPC and cloud)
— architecture, network, libraries, algorithms — the
ultimate solver

» Machine learning in scientific simulations — Drug Lead
optimization, cancer cell simulation, nanopore materials for
CO2 capturing, and thrombosis simulation — Al for
accelerated discovery



Distributed training for deep learning

» “Let data do the programming” calls for big data and big
model

» GPT-3: 175 billion paramters, 570GB, 500 billion tokens, 9
days(*), millions of dollars

» WuDao: 1.75 trillion parameters, 4.9TB text and Images

» BaGualu: trains up to 174 trillion paramters
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Distributed training for deep learning

» “Let data do the programming” calls for big data and big
model

» GPT-3: 175 billion paramters, 570GB, 500 billion tokens, 9
days(*), millions of dollars

» WuDao: 1.75 trillion parameters, 4.9TB text and Images

» BaGualu: trains up to 174 trillion paramters

» Been-there-Done-That: parallelism, communication, I/O
» Unique to deep learning on converged HPC-Al-cloud
systems
» Convergence
» Generalization
» Privacy and Security
» We propose fast algorithms, analyze different approaches,
with special focus on scaling, and discuss elastic training in
the cloud environment



Landscape of distributed training approaches

» Asynchronous SGD — downpour, Hogwild!, elastic
averaging SGD, and other decentralized methods

» Synchronous SGD — Hardsync (most popular), model
averaging (federated learning)

» SGD with other features — quantized gradient, variance
reduction, importance sampling, coordinate descent



Problem, notations, and results

» Problem:

min F(w)

n
where F is the objective function, and F(w) := Ef(w; &), or 15 > fi(w)
j=1

» Results: SGD, O(1/N) convergence with F being twice continuously

differentiable and strongly convex, O(1/+/N) for non-convex; Synchronous SGD,
O(1 /v NP) for non-convex

number of processors/learners

P
K number of batches processed per each learner between synchro-
nizations

Bn mini-batch size for n-th update
Mn step size (learning rate) for n-th update

g{( s || s-thrandom sample on processor j and step k

w model weights
7 momentum
L Lipschitz constant




Asynchronous stochastic gradient descent (ASGD)

» Pull: Get the parameters from the

server
» Compute: Compute the gradient Parameter Server W= W - 9 AAw

with respect to randomly selected OO0y

mini-batch (i.e., a certain number of . _ |

samples from the dataset) / / i l ] \\
> Push and update: Communicate e 8% 88 88

the gradient to the server. Server

then updates the parameters by sy ﬁ ﬁ @

subtracting this newly communicated
gradient multiplied by the learning
rate



A K-step averaging algorithm

Algorithm 1 KAVG
Initialize wy
OnPj,j=1,...,P, inparallel :
Learner P; set W, = wy

an
forn=1,...Ndo
fork=1,...,Kdo SGD
randomly sample a mini-batch of

size Bn and update: Averoglng

W oW - "”ZVF( k1i6ks)

\/

Averaging

end for

P
Synchronize w1 = ,13 > w’,,+K
j=1

end for




Best Distrubuted Solver?

Practically, for the same data samples processed:
» Which scales with P?
» Which progresses faster towards local optima?
» Which has lower communicaton cost?

We investigate

N
1 )
~E D [[VF (W)

n=1
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,» AKA, convergence guarantee
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KAVG scales better than ASGD

For ASGD, with fixed stepsize

Co(F(wy) — F*) N C11-2'772M2P]
N7 2B

1 N ~
—EY[|VF@Wa)|3 < |
N n=1

where Cy and C; are constants independent of P

For KAVG, with fixed stepsize

2(F(Wq) — F*) LK7M (5+L(2K—1)(K—1)ﬁ)]
NK—-1+6)7 BK—-1+68\P 6

1 N ~
~ES (| VA3 < |
n=1

where 0 < § < 1



KAVG allows for larger stepsize

» Stepsize schedule for ASGD:

oo [e%)
Znn=00; anz7<°° '(e-g-nn=@(— ,
n=1 n=1 nP 2

» Stepsize schedule for KAVG:

. o0 oo
PLnn(K 1)+1):oo; Z'f?g<oo,or2%<oo.

o0
nz:; = ( PLnnK + 1 ey

Mn =
o(YBP) 1t o p<t,if



A real-world example: speech recognition

» The problem: acoustic modeling
using hybrid HMM/NN. One“frame”
per 10 ms., with 94M frames for the
260-hour Switchboard American
English telephone conversational
task, and 708M frames from the
2000-hour dataset; 32,000 HMM
states

» The NN: a 4-layer bidirectional LSTM
with a window of 21 frames. 512
units per direction per layer

» Notoriously hard to scale

100

loss

1

10

Downpour =——+—
EAMSGD —%—
KAVG —¥—
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20 learners (log — log plot). All use learning rate 0.01



Optimal K

If communication is free, do we want frequent communication?



Optimal K

If communication is free, do we want frequent communication?

Let S = N x K be a constant. Suppose that KAVG is run with a fixed
stepsize n, = 77, and a fixed batch size B, = B for all n € N satisfying

LK# 1 _ 3L2K#2M
1> " adB> e
2 P 2
(1 — 8)(F(wq) — F*) (386 — 1)LiM . L2752 M
> _ =
SnHé 25PB 3B

the optimal choice of K is greater than 1




K can be very large

Experiments with CIFAR-10 with up to 128 learners
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K can be very large
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Experiments with CIFAR-10 with up to 128 learners
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With F»’esNet—1]:9, Kopt €an be so large that only 1
synchronization per epoch is needed



So communications do not have to be too frequent...

Do we just increase P for fast convergence?



So communications do not have to be too frequent...

Do we just increase P for fast convergence?

Convergence challenge for large P:
Let S = NPBK be constant, then

§. _
N2 IVFWn)|3

2(F(W,) — F*)PBK LKiM (K L2K — 1)K — 1)7
<|| SK—110)7 +E;(K_1+5)(75+ 6 )]




So communications do not have to be too frequent...

Do we just increase P for fast convergence?

Convergence challenge for large P:
Let S = NPBK be constant, then

1 -
NED I VFWa)3
n=1

2(F(w;) — F*)PBK . LKkam (5+L(2K_1)(K_1)77)]
[ S(K—1+6)7 B(K—-1+6)\P 6 ’

<

Increasing P increases the first term and hence the bound on
convergence guarantee



Introducing reduction momentum

Algorithm 2 MAVG

initialize wy, v < 0 6
on processor j, j = 1,..., P, in parallel: - £1
Learner P; set W, = wy 5GD
forn=1,...,Ndo

fork=1,..,K do sGD /*

randomly sample a mini-batch of
size B, and update:

Averaging w2

d
N

Averaging
end for Momentum step
1 P ' ;
a5 ZL=1 Wjn+K’
d«—a—wp v+ uv+d;
Wpi1 = Wp+V;
end for

SGD

Wi = Wi g "”ZVF( hikotibhs)

i

v

w3




MAVG convergence bound

Suppose MAVG is run with fixed step size n > 0, batch size B > 0
and momentum parameter . € [0, 1) such that the following condition
holds

. LPn?(K +1)(K —2)  2nlK
B 2(1 — p)? 1—p

and
1-6>L%n%/(1 — p)°,

for some constant § € (0, 1). Then the expected average squared
gradient norms of F satisfy the following bounds for all N € N :

N 4 _ 2 2(1 — p)(F(wy) — F*)PBK
> VEI|VF@n)||5 < S(K —1+6)n

n=1

[°n202(2K — 1)K(K — 1)
6(K — 1+ 8)B(1 — )2

2LK2 2 2
+ e 14+ —FE
PB(K — 1+ 8)(1 — p) 2(1 — p)?

Ln,u,2K2M
(K=1+8)(1 — )

Notice how the first term is scaled by (1 — p)



MAVG — optimal 1 > 0

Suppose MAVG is run with fixed step size n > 0, batch size B > 0,
number of learners P > 0. For N meta iterations, such that

LPn2(K +1)(K — 2
1> n°( 2)( )+2nLK

and
1-6> %%,

for some constant 6 € (0, 1). When the following conditions hold,

2 B(F(wy) — F*)
5LNo2(5/P + 6L)

n and K < 5

or
No2 1 1
> ( + -)andK > 5
2B(F(wy) — F*) 2LP L

we have

Keoptimal > 0



MAVG vs. KAVG

80

Model KAVG | MAVG ol
ResNet-18 94.81 | 95.31 ol
DenseNet 95.2 95.5 & 0l
SENet 94.73 | 94.91 BN
GoogLeNet 94.36 | 95.00 5l
MoibleNet 91.77 | 92.16 © ol

PreActResNet-18 || 94.54 | 95.03 ol AV b |

DPN 95.69 | 95.75 ol . . MAVG —x—

Test Accuracy (%), CIFAR-10, 200 epochs, 1020 30 4(;,)0030 60 W0 0 W

P=6

ResNet50, ImageNet-1K, P=48, 11=0.6



MAVG with regard to scaling P

Let S = N« Px B x K, be a constant. Suppose MAVG is run with a
fixed step size n, a fixed batch size B, and a fixed frequency K.
Suppose for P = Py, the optimal momentum parameter is y;. If the
number of processors is increased from Py to APy, where A\ > 1, the
momentum parameter 3 satisfies

Hx > Ko



Optimal 1 increases with P, CIFAR-10 and ResNet18
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Performance on the 2000-hour speech recognition
task

P=17 —t—
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Performance on the 2000-hour speech recognition
task

30%10° 60%10° 90*10°>
Time (s)

With 96 GPUs, MAVG trains with 3.5 hours (the previous approach
takes up to a week)



Improved generalization performance

airplane

Adaptive gradient methods
such as Adam tend to have
poor generalization. We
note that KAVG and MAVG
bridge the generalization
gap, as shown by the class
activation mapping (CAM)
that localizes important
regions in the input for
classification




Elastic distributed training in cloud

We proactively adjust the number of learners, and ask whether
such schemes bring performance or cost advantage.

» Schedule | uses a constant number of learners Py, Py > 1
— static resources

» Schedule Il starts with Py learners and then increases to
Py > Py learners;

» Schedule lll starts with P; learners and then decreases to
Py learners — Folklore choice

» Schedule |V uses a constant of P4 learners — static
resources



Evaluations

\4

Schedule | uses 6 GPUs and trains for 175 epochs
Schedule IV uses 12 GPUs and trains for 350 epochs

Schedules Il and Il both train for 300 epochs. In Schedule
ll, we start with 6 GPUs, and increase to 12 GPUs after 50
epochs. In Schedule lll, we start with 12 GPUs, and
decrease to 6 GPUs after 250 epochs.

All four schedules should have similar training time. One
epoch with Schedule |V takes slightly more than half the
epoch time with Schedule |l

Adam optimizer, B=64, K=8



Schedules
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Figure: Validation accuracies for four schedules with ResNet-18 and
SENet



The ultimate solver

Provable fast convergence with good generalization
performance for elastic resources without the need for manual
tuning for current and future learning paradigms.

New challenges appear when machine learning plays an
Important role in simulations.



Al in Intelligent simulation for accelerated discovery

» CASTELO - drug lead optimization and immunotherapy
» MuMMi — simulating RAS proteins on cell membranes
» High-throughput screening of nanopores

» |IPDYNA — Multiscale platelet dynamics for understanding
of thrombosis



MuMMIi — simulations of Cells
and proteins for cancer cure

direct feedback into DDFT parameters

= Mutated RAS is found in nearly S (-0 — -’4-’

1/3 of cancers, not yet able to ' : -4
target with known drugs 3

» Adaptive Multiscale Model,
simulating RAS proteins on Cell
membrane

= Machine learning directs
instigation and investigation of
Coarse Grain (CG) particle
simulations

in situ simulation analysis

= Sample space more efficiently
than brute force approach Image Credit: IM number LLNL-JRNL-749684



ML cataloguing events and discovering rare events

= 350TB of data generated ®
= Many RASProteins ©

Upright
RAS

Extended HVR and
upright RAS

= Where to instantiate the most
costly detailed atomic level
simulation?

Max Z-Distance to G-Domain [Angstgom]

*

‘Extended HVR
RAS

30 35

40 45 50 55
Mean Bead Inter-distance to HVR [Angstrom]

37



Drug lead optimization

Autoencoder analysis of

the whole molecules
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Type-1 diabetes immunotherapy

Hybrid cloud-based
workilow
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High-Throughput Screening of Nanopores for
carbon capturing

@). Dy

Pore diameters

Pore volume analysis,
identification of channel systems

Nanopore morphology

EIELEN-S

Atomistic nanopore Computational Novel nanopore Vi : : Optimization engine
: irtual adsorption experiment
retrieval tool topology toolkit generation tool P P (BOA MVP2 FoC)

Local database of structure,
Local database of structure, .
Local database of structure . 2 metadata & topological Nanopore topology
metadata & topological Nanopore structure file .
& metadata parameters & adsorption parameter values
parameters .

Preliminary results show that graph convolution
on crystallography graph can predict adsorption
of CO2




GNNSs for adsorption
prediction

* Orig—CGCNN 0.7 . . | | | | | | |
orig —+—
* Edge — With edge edge
convolution 0.6 | P R
* Attention — With Z charge
attention 0.5 X
mechanism

* Charge —use
atom partial
charge features

loss
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D

epochs



