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Dielectric Waveguide Mode Solver

Georgia Tech Terabit Optical Networking Center

= Goal: Find solution to maxwell's equations for a given
geometry
o Iterative eigenvalue problem with sparse matrices

m Current challenges:
o Solving for eigenvalues is an expensive calculation
o Limited to smaller structures at lower resolutions
o Speed-up can enable:

» faster device designand optimizations
= higher resolution calculations (more accurate)

= Existing work:

o A GPU Solver for Sparse Generalized Eigenvalue Problems With
Symmetric Complex-Valued Matrices Obtained Using Higher-
Order FEM:
https://ieeexplore.ieee.orq/iel7/6287639/8274985/08468163.pdf

o This work uses the finite-element method (FEM), which isn't
scalable to larger geometries. We will use the finite-difference
method (FD)
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Understanding Light Propagation

Georgia Tech Terabit Optical Networking Center

= Light is described with both an electric field, E, and a magnetic field, H
o Each field has three components (x, Yy, 2)
o Total of 6 field components (Ey, Ey, E,, Hy, Hy,, H,)
o Each field is a function of position and time

= How are the fields connected? - Maxwell equations

= Time varying magnetic fields induce spatial varying electric fields (and vice versa)
o Time varying fields can also be considered in frequency domain using a fourier transform
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Understanding Waveguide Modes

Georgia Tech Terabit Optical Networking Center

2
= Traditional wave equation is of the form: — 2

= Solution u = A sin(kx + wt)
o w Is time dependence
o k is the spatial dependence (wave vector)

= A mode is one of these solutions to the wave equation

ot is a spatially stable solution
o Each mode is defined by its wave vector k

d*E, d°E,

dzz M€ qr2

= Light is a wave!
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https://blog.soton.ac.uk/soundwaves/standing-waves/2-string-modes/ #S VI

= We can combine maxwell’s equations to get a similar form for the E and H fields

= Thus, for a given waveguide geometry (e profile) there exists a stable solution to maxwell

equations following the form of the wave equation
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Mode Solver Problem Breakdown

(1) Define your geometry (3) Calculate the eigenvalues

\ da This is where HPC comes into play
R e
B
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(2) Create the maxwell operator matrix A

. (4) Compute the mode fields (eigenvectors)
sparse matrix
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Performance Metrics of Technology

Speed vs Resolution
oFor a given resolution, how long does the algorithm take to complete?
oFocusing on GPU speedup—fix the number of processors, memory, etc.
oCompare the accelerated version to the baseline open-source versions

Performance of the Resolution (convergence)

oAt what rate does the resolution increase as we allow for more execution time?
oThis needs to be at least O(An?)

oWith the speedup, we'll be able to more accurately calculate the convergence rate,
because we'll be able to simulate at higher resolutions
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Baseline Metrics

= Current state-of-the-art mode solving represented by many open-source repositories

= Mpb
o https://github.com/NanoComp/mpb
o Implemented in C
o Includes implementation with distributed memory using MPI
= Empy
o Implemented in python
o Fully vectorial finite difference method
o https://qithub.com/lbolla/EMpy
= Modesolver
o Implemented in python
o https://github.com/jtambasco/modesolverpy

Electromagnetic Python

Georgia Tech Terabit Optical Networking Center


https://github.com/NanoComp/mpb
https://github.com/lbolla/EMpy
https://github.com/jtambasco/modesolverpy
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Solution: GPU Accelerated Mode Solver

m Goal: Accelerate a presently implemented mode solver on a GPU

= Design:
o Start with existing solution (serial), open-source such as empy

oConvert the eigenmode problem to be GPU compatible
= Will require parallelizable pre-conditioner
= Possible algorithms include locally block preconditioned conjugate gradient (LOBPCG)

oValidate accuracy and determine GPU speed-up

= Challenges:
oSolving an eigenmode problem requires an iterative solution
oWill have to take advantage of matrix sparsity to reduce gpu memory requirements

Georgia Tech Terabit Optical Networking Center
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Taking Advantage of Matrix Sparsity on GPU

=\We can use the fact that matrices we will be working
with are sparse, i.e., very few coefficients are nonzero
values

= Memory consumption can be reduced (and performance
Increased) by using special representations of these
matrices, storing only the nonzero coefficients

= For portions of the algorithm that involve multiplying
matrices, we can take advantage of Sparse-Matrix
Dense-Matrix Multiplication (SpMM) on CUDA

oThe cuSPARSE library provides cusparseSpMM for this
purpose

Georgia Tech Terabit Optical Networking Center

https://developer.nvidia.com/blog/accelerating-matrix-multiplication-with-block-sparse-format-and-nvidia-tensor-cores/ 9
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Validation

= Results will be compared against current open-source mode solvers

= Multiple mode solvers will be used in tandem since accuracy also depends
on simulation resolution

EMpy

Electromagnetic Python

Georgia Tech Terabit Optical Networking Center
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Planned Experiments @) of Teehnology

m Datasets: Select three geometries (primarily isotropic but with consider anisotropic dielectrics)
o Rectangular waveguide
o Rib waveguide
o Circular waveguide

Rectangular Waveguide Rib Waveguide Circular Waveguide

— — .

| N | N | |

= Testbed:
o PACE Cluster (coc-ice, coc-ice-multi, coc-ice-gpu)
= Potential plots:

o Speed vs Resolution
o Performance vs Resolution (convergence)

Georgia Tech Terabit Optical Networking Center
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Project Category & Problem Definition

 Category: Scientific Application &
Reproducibility

* Problem Definition:

» Density Functional Theory (DFT) is
used to investigate properties of
molecular systems.

* DFT relies on solving the Kohn-
Sham equations, which require
computationally expensive
orthogonalization of large
matrices.

* Proxy apps can be used to reduce
development workload and yet
draw conclusions on code
performance on heterogeneous
architectures. ~

G eorgia

<+l Tech

https://en.wikipedia.org/wiki/Density_functional_theory#/media/File:C60_isosurface.png



What are proxy apps?

* Proxy apps reduce the problem to essential
components to understand performance- v
critical aspects of an algorithm. R,

* In this work, we will employ the Lowdin e
orthonormalization of a tall-skinny matrix e o
as a proxy app for solving the KS equations. ... o @

+ Other possible proxy-apps: e

https://proxyapps.exascaleproject.org/app/ e

Goulash 2 0-RC1 Website Git

(v Georgia



Procedure for Solving Kohn-Sham Equations

Initial Guess
p(r)

Calculate Effective Potential

verr(r) = Ven(r)
FED e + Vel 1. Compute the Gram

o= == d === - matrix S = ATA
| ‘fi“iz“’é‘é"i“f,ﬁiﬁi e —
Gk ! 2. Compute C = §1/2

3. Update A: 4,,,,, = AC

p(r) = 2 Wi(r)|? = Eap(r)

yes
Output Quantities
/ po(r), Eilpo(r)] — /
Forces, Eigenvalues, ...
Gr Georgia
Majid, M.F.; Mohd Zaid, H.F.; Kait, C.F.; Ahmad, A.; Jumbri, K. lonic Liquid@Metal-Organic Framework as a Solid Electrolyte in a Lithium-lon Tech.

Battery: Current Performance and Perspective at Molecular Level. Nanomaterials 2022, 12, 1076. https://doi.org/10.3390/nano12071076



Goals + Performance Metrics

GoaIS: Parallel Computing 100 (2020) 102703
» Reproduce and benchmark method cOmmu(,:;%‘;::}i -

Schulz —a—
AC —=—
ideal

from [1] on GT clusters

* Introduce and benchmark mixed
precision scheme

Performance Metrics

Wall clock time/s

« Compute & communication time w2l
12 24 48 96 192

» [terations to convergence / Number of P! tasks

d e p a r.t u re fro m O r_t h Og O n a I i_ty Flig. 7. Strong scaling of the Lowdin orthonormalization for a 3,000,000x 3000 tall and

skinny matrix.
Strong scaling benchmark method [1]
[1] M. Lupo Pasini, B. Turcksin, W. Ge, and J.-L. Fattebert, “A parallel strategy for density functional theory F & Georgla
computations on accelerated nodes,” Parallel Computing, vol. 100, p. 102703, Dec. 2020, doi: ' 1 Tech.

10.1016/j.parco.2020.102703.




Baselines

 Cholesky factorization (CholeskyQR)
 Lowdin Orthonormalization from [1]

Table 2

Accuracy attained in restoring orthogonality with CholeskyQR and Lowdin direct solver
(matrix diagonalization with matrix inverse square root of the diagonal factor) for
various standard deviations of Gaussians test functions.

o CholeskyQR Diagonalization
0.25 3.2e-16 4.9e-14
0.5 5.8e-15 2.8e—13
0.8 1.9e-13 4.7e—-12

, Georgia
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Proposed Solutions

. Validation:
* Pasini et al. Paper

» BLAS/Sequential version of orthonormalization
procedure

. Dataset: Use test cases from Pasini et al.
. Algorithm:

Algorithm 1 Proposed Modification to Schulz iteration us-
ing 2 tolerances (/g p and 0pp, two temp. storage 7' and
15, and 3 matrix-matrix multiplications per iteration.
Result: Z = §~1/2
Initialization: Z = ;0 = 10.;

for all ¢ in [#sp,0pp] do
tol =0

while 0 > tol do

1T, =27
15 = ST,
T, = 21T,
Ty + 05(2 — Tl)
5 = 173 1/112]l;
L +— 7+ 11
end while
end for
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1 method in [1] and "
Experl ments cUBLASDGEMM asa

* Potential Test Beds:

Runtime ratio between 140

. . . 100 ¢
function of matrix size

80

Ratio

60

COC-ICE 40 £ .
HIVE (4 V100s/node, 16 nodes) 20§ "EE ey
ICEHAMMER "0 5000 e

Matrix size

e Other Potential Plots:

Wall clock time vs processes

C _ Alternate
Communications time vs processes Parallel
Compute time vs processes Strategy?
Strong and weak scaling
Convergence iterations vs departure Benchmark Test
from orthogonality vs mixed-precision
schedule

Mixed Precision
Test

[1] M. Lupo Pasini, B. Turcksin, W. Ge, and J.-L. Fattebert, “A parallel strategy for density functional theory computations _
on accelerated nodes,” Parallel Computing, vol. 100, p. 102703, Dec. 2020, doi: 10.1016/j.parco.2020.102703. Gr Georgla
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Accelerating Discrete
Wavelet Transform

Devashish Gupta, Parima Mehta, Rakesh Mugaludi

Project Category: Application 7 .. Georgia
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Introduction

* Discrete Wavelet Transform (DWT) is a powerful mathematical tool in
signal processing and multiresolution analysis

* It is a generalization of the Fast Fourier Transform that allows capturing
global and local features of the input data

Haar

Gaussian or Spline

e

Shannon or Sinc Daubechies Daubechies

11T

Biorthogonal Mexican Hat Coiflet

Widely used 1D mother wavelets

500
Time [s]

Multiresolution analysis

600



Problem

* DWT hierarchically decomposes the input into a basis of wavelets
derived from the 'mother wavelet'

* [t involves repeated correlations of the input with the scaled
and shifted mother wavelets

* Complexity scales exponentially with increasing number of levels

A Time Series A Fourier Transform A Short Time FT A Wavelet Transform

Time-frequency resolution
allocation for time domain

data, FT, STFT and DWT.

frequency
]qulK ney
frequency
frequency

%

time time

time time



Motivation

* Diverse applications:

* Image compression and denoising

* Gravitational wave detection and analysis
EEG & ECG signal analysis
* Feature extraction for ML
Multiresolution analysis of financial signals
* Seismic data analysis, earthquake prediction

* Improvements in time to solution would benefit processing large
images. Ex. James Webb Space Telescope generates 12.6GB of raw
image data/hour.



Solution
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Hierarchical basis for 1D Haar transform

* DWT, especially Haar wavelet transform is
highly parallelizable as:

* |t involves repeated correlations of the input
with the scaled and shifted mother wavelets

* Computation has temporal independence
within a level and spatial independence across
levels.

* High scope for data and computation reuse
with minimal communication.



Solution
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Hierarchical basis for 2D Haar transform

* Challenges to tackle:

* Each level requires different amount

of computation

* Ensuring coalesced memory access

e Optimal domain decomposition for balanced

workload.

|

Goal: Improve time to solution for
1D & 2D Discrete Wavelet Transform

|




Validation

* Wavelet transforms having several components, the ability to compare
and validate each of these components would be important
for realizing a functionally equivalent parallel implementation

 We aim to validate our final output against existing implementations
such as in Matlab's Wavelet toolbox and GNU Scientific Library (GSL)

* These libraries support multiple wavelet transforms allowing us to
extend and compare against a wider set if time permits



Validation

* We further aim to focus on validating our implementation on tasks
such as signal decomposition (image compression) and signal
denoising




Datasets and Testbed

 All available license free signals (images) on the internet can be used
for both signal-decomposition and signal-denoising task. This gives us
access to a diverse signal-set with varying resolution and composition

* Gigapixel, Panoramic, and Deep Field Astronomy images would act as
large workloads to push our implementation to its limits




Datasets and Testbed

* Denoising literature and Kaggle have a large corpus of genuine
noisy image datasets such as for low-light photography and raw
sensor output. One can also generate noisy images synthetically

* We aim to test our implementation on NVIDIA V100 GPUs on the
PACE cluster




Performance Evaluation

* Baseline: Shared memory implementation using OpenMP

Accelerated Discrete Wavelet Transform

B Shared Memory (OpenMP) [ Naive (CUDA) Optimization 1 (CUDA)
B Optimization 2 (CUDA) [ Final (CUDA)

8
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1024 x 1024 2048 x 1024 4096 x 4096 8192 x 4096 8192 x 8192

Image Resolution



Performance Evaluation

* Baseline: Shared memory implementation using OpenMP

Discrete Wavelet Transform

== Shared Memory (OpenMP) == Naive (CUDA) Optimization 1 (CUDA)
== Optimization 2 (CUDA) == Final (CUDA)

Execution Time (s)

Wavelet Levels
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Motivation

M«=4.6e+11

M«=5.5e+11

Lots of applications calls for simulation frameworks
about large-scale particle systems!

* Astronomy:

Gravity simulations for galaxy systems.
* Chemistry & Biochemistry:
Molecular dynamics
* Electro-Dynamics:

Multiple particles moving

under electromagnetic fields (Accelerator, Tokamak)
* Fluid-Dynamics:

Smoothed Particle Hydrodynamics
 Many others...
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Problem Abstraction

For particle dynamic systems, we have:

A set of particles p € Q.
For each particle p, it has the position(assume in 3d) r, velocity v, and some other attributes s (for example,

massive, charge, temperature, box volume, etc.)
p=vs)r=07y2),v=v1,1,)s=(mq,..)
Between each particles, there is some interactions, for example, gravity, Coulomb, Van der waals force.
f(1,02) (D1, Dx)

S®rP1) - f(Pr,Pr)
These interactions to one particle can be merged:

fBr® = ) f@Bip)

And the interactions will affect the position of each particles along the time under certain timestep At:
, Q)
[@e®)

v, (t + At) = v, (t) +

ri (t + At) = 2r, (t) — i, (t — At) + TPf) Ay

m



Proposed Solution

All particles inside a box with/without Periodic Boundary Conditions (PBC)
Initial velocities and positions in shared memory; each GPU thread assess a local set of them

Simplification:
1. Use cutoff, outside which the forces can be neglected
2. Verlet Integrator on position, Leap-Frog Integrator on velocity

l. (CUDA-aware) MPI: Those particles
having interaction should be on the Computue
Which GPU same GPU (cut the computation by half) B P2 1P Region
block assess Il. Each block in charge of a predetermined P4|Ps|Pe
which subset of partition of the box P7|Ps | P9 Interaction
partideS? (less communication) egion




Framework Overview

GUI for user input

User-
defined —

—

S —

[ Particle Definition }

[ Interaction Rules }

[ Other parameters }

Parallel computations (CUDA only and/or MPI+CUDA)
a O

Initialize
particles
into shared
memory

" )

N\

Compute & Update dynamics iteratively

J

-

&

Compute & Update dynamics iteratively

~

J

[ Compute & Update dynamics iteratively J i

gi—

Parallel
units

Simulation outputs

-
Trajectory &

feature data
\_
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Extension*)

Animation;
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Web API for interactive

outputs (?)
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Experiment Setup

 Testbed: PACE

* Validation: 1. Compare with the sequential version of our algorithm )
2. Check if results comply with Van der waals equation (P + 7:/—;) (V —nb) = nRT
3. Output data alignment with respect to cutoffs

 Baseline (benchmark): To be determined, will be from one or more of the three categories

1. Public academic / business repositories (e.g., this simulation demo )

2. Published simulation software (e.g., PDPS)
(Both of which can find sequential / parallel realizations)
3. Reproduce paper results for comparison

 Datasets: Randomly Initialized (will refer to public datasets like PubChem)

e Metrics:

1. Speedup=T(n'1)

T(n,p)
2. Roofline Model

3. Produce strong scaling plot

(compare our computation time with other solutions)



Summary

 Category: Application

* Problem: Large-scale Particle Dynamics Simulation
 Performance Metric: Speedup + Roofline Model

* Baseline: Our sequential version

* Solution:

1) MPI+CUDA. 2) Partition with cut-off range.

3) Periodic re-partition for tradeoff of acc & perf.
* Validation:

1) Try to find some benchmark.

2) If no benchmark, try to simulate some real-world phenomenon.

3) Find some constant variable in system, try to verify it so not change during simulation.
 Test bed: PACE COC-ICE, AWS if possible (might need some sponsorship LOL)
* Potential plots:

1) Speedup and Strong Scaling. 2) Performance breakup

3) Simulation results rendering.
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Distributed Hyperparameter Tuning for
Machine Learning Potentials in Catalysis
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Motivation: Data-Driven Catalyst Discovery Workflow

7 ot

Test l&) b *many variations, this is
Sel
catalyst

5 just one example
' d
Experiment . ki

e e S

G R ¢

.
* e S B
L Candidate Surfaces
b c

ML-accelerated DFT

ML -> Training ->
Hyperparameters

Active Learning
z| A also involves ML, but not
g /*r\\ planning to focus on this

Descriptor component for this project

SeIEE PEOPEILY ML-guided screening

databases

CSE6320: High Performance Parallel Computing 1



Project

— 1. Graph Algorithms on Kokkos

2. Distributed Non-uniform hypergraph clustering

3. Comparing graph partitioning using patoh, metis and Zoltan

4. Accelerating Non-negative Matrix and Tensor Factorizations in PLANC

O rigi n a | i d ea fro m P i a Zza _ 5. ChatGPT for HPC programming — github copilot

6. Mixed Precision Deep Networks Training

7. Distributed-memory stencil computations for scientific computing applications
post on 03/08/23 v 9

8. Parallel iterative solvers for sparse linear systems
9. Distributed Hyperparameter search for Deep Learning

- 10. Negative sampling for distributed GNN training

Project Type: | will integrate distributed hyperparameter
search algorithms into training of ML potentials relevant to data-
driven catalyst discovery workflows

CSE6320: Parallel Computing )



Problem Statement

Problem: Depending on the search space, search algorithms
for hyperparameter tuning can be

(from hours to days). State-of-the-art packages for training of
ML potentials (e.g., SchNetPack, AMPTorch, etc.) do not
support distributed hyperparameter tuning.

4 )

Solution: Distributed Hyperparameter Search

S J
( )

Performance Category: Time to solution

& J

CSE6320: Parallel Computing



Solution

Solution: Distributed Hyperparameter Search. Different algorithms for
distributed search might be considered.

Parallelization “friendliness” (i.e., parallel algorithms already
exist or easily adapted — inventing algorithms is outside scope of project).

é » S W - .- Grid Search classical example and very easy to
S S O B S distribute (independency of computations).

S| e e e e oo Other algorithms might be considered.

2 o o o o o @

I

Hyperparameter 1

CSE6320: Parallel Computing



Baselines

{ Performance Category: Time to solution J

Time

Single Multi

CSE6320: High Performance Parallel Computing



Validation

-

Important: Some Hyperparameter Search Algorithms are not deterministic
and may not return the same “optimal hyperparameters” between trials.

~

a

{

Validation: Relative model accuracy improvement w.r.t. sequential output

J

Accuracy

I *If “deterministic” (e.g., Grid Search),
direct validation could be conducted in
(Optimized) theory. However, even for same set of
hyperparameters, this is still subject to a
small amount of variance in training
(depending on ML algorithms).
Single Multi

CSE6320: High Performance Parallel Computing



Experiments

[ Dataset

|

Open Catalyst 2020 (OC20) Dataset
Dataset of DFT calculations for catalysis
systems with high chemical diversity
Small chunk of it. Full dataset has
millions of data points which is not
feasible given resource constraints

Open Catalyst 2020 (OC20) Dataset

Descriptors ) % Relaxations
>
; '\
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c iiil_f ":f-. b
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lonic compounds

2D Materials " Renew. Chem. and CO, Utilization

CSE6320: High Performance Parallel Computing -



Experiments

e Either PACE or cloud services (AWS/Azure/GCP) aWS
 PACE usage ultimately depends on whether | can
install all necessary dependencies to run the codes
* PACE should be possible since | have successfully
installed some of the packages already (e.g., Atomic D
Simulation Environment library)
CSE6320: Parallel Computing g




Experiments

[ Results Validation ]

1. Faster? 2. Model accuracies comparable?

:}_

Time
Accuracy

Single  Multi Single Multi

CSE6320: High Performance Parallel Computing 9



Georgia
Tech.

Accelerate Tensor Computation Leveraging
TVM and SIMD on ARM CPU

Fan Qu, Peidi Song
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H Category

® Application
o In detail, our focus is on developing a practical solution to
accelerate tensor computation
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HProblem

® Tensor computation
o Widely used in neural networks
o E.g.,, GEMM, Convolution, Nomalization
o Computationally expensive and time-consuming, particularly on ARM CPUs

e Goal
O Accelerate tensor computation on ARM CPUs
O Leverages TVM and SIMD technology
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B Performance Metrics

e Runtime for data of different of size

e Evaluate different tensor operations
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—IBaselines .
e PyTorch O PyTorch

e TensorFlow

e AutoTVM A,
1ﬂ| TensorFlow

e Ansor
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1 Solution
TVM slvm

e A Python interface end-to-end compiler framework for CPU, GPU,

and accelerators
e Seperate computation and optimization
O Define computation
m C=sum(Alik]*B[k,j], reduce=k)
O Define schedule primitive
m io,ii =split(i, factor=8)
m reorder(io, jo, ko, ki, ii,ji)

J7
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ESolution
NEON SIMD Instructions arm

* NEON is a technology that enables parallel processing
on ARM CPUs.

e Vectorization: processing multiple elements of the
tensors at the same time

e |Low-Level Optimization: loop unrolling and memory
alignment to maximize the performance
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1 Solution

e Optimization steps

Tensor computation definition from mathematical formula
Handwritten NEON SIMD vectorized kernel

TVM schedule primitives for blocking (tiling)

O O O O

Integrate them and generate optimized codes
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1Validation

We will use the calculation result of PyTorch as the ground truth.
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1 Datasets

e Different operators
o GEMM
o Convolution 2D
o BatchNorm
o)

e Different tensor sizes
® Generate tensors randomly
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1 Platforms

We plan to optimize common CPUs for consumers
and servers.

e Apple Silicon
® AWS Graviton processors
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