
GPU-Accelerated
Electromagnetic Mode Solvers

for High Performance Computing Applications
(GAEMSHiPCA)

John Moxley

Joel Slaby

Conner Yurkon

March 16, 2023

Georgia Tech College of Computing

School of Computer Science

G
e

o
rg

ia
 T

e
c
h

 T
e

ra
b

it
 O

p
ti
c
a

l
N

e
tw

o
rk

in
g

 C
e

n
te

r
G

e
o

rg
ia

 T
e

c
h

 T
e

ra
b

it
 O

p
ti
c
a

l
N

e
tw

o
rk

in
g

 C
e

n
te

r

Dielectric Waveguide Mode Solver

◼ Goal: Find solution to maxwell’s equations for a given

geometry

 Iterative eigenvalue problem with sparse matrices

◼ Current challenges:

Solving for eigenvalues is an expensive calculation

 Limited to smaller structures at lower resolutions

Speed-up can enable:

◼ faster device design and optimizations

◼ higher resolution calculations (more accurate)

◼ Existing work:

A GPU Solver for Sparse Generalized Eigenvalue Problems With

Symmetric Complex-Valued Matrices Obtained Using Higher-

Order FEM:

https://ieeexplore.ieee.org/iel7/6287639/8274985/08468163.pdf

This work uses the finite-element method (FEM), which isn't

scalable to larger geometries. We will use the finite-difference

method (FD) 2

𝜇−1∇× 𝜖−1∇× 𝐇 = 𝜔2𝐇

https://ieeexplore.ieee.org/iel7/6287639/8274985/08468163.pdf

https://ieeexplore.ieee.org/iel7/6287639/8274985/08468163.pdf

G
e

o
rg

ia
 T

e
c
h

 T
e

ra
b

it
 O

p
ti
c
a

l
N

e
tw

o
rk

in
g

 C
e

n
te

r
G

e
o

rg
ia

 T
e

c
h

 T
e

ra
b

it
 O

p
ti
c
a

l
N

e
tw

o
rk

in
g

 C
e

n
te

r

Understanding Light Propagation

◼ Light is described with both an electric field, 𝐸, and a magnetic field, 𝐻

Each field has three components (x, y, z)

Total of 6 field components (𝐸𝑥, 𝐸𝑦 , 𝐸𝑧 , 𝐻𝑥, 𝐻𝑦 , 𝐻𝑧)

Each field is a function of position and time

◼ How are the fields connected? - Maxwell equations

◼ Time varying magnetic fields induce spatial varying electric fields (and vice versa)

Time varying fields can also be considered in frequency domain using a fourier transform

3

G
e

o
rg

ia
 T

e
c
h

 T
e

ra
b

it
 O

p
ti
c
a

l
N

e
tw

o
rk

in
g

 C
e

n
te

r
G

e
o

rg
ia

 T
e

c
h

 T
e

ra
b

it
 O

p
ti
c
a

l
N

e
tw

o
rk

in
g

 C
e

n
te

r

Understanding Waveguide Modes

◼ Traditional wave equation is of the form:

◼ Solution 𝑢 = 𝐴 sin(𝑘𝑥 + 𝜔𝑡)

𝜔 is time dependence

 𝑘 is the spatial dependence (wave vector)

◼ A mode is one of these solutions to the wave equation

 It is a spatially stable solution

Each mode is defined by its wave vector k

◼ Light is a wave!

◼ We can combine maxwell’s equations to get a similar form for the E and H fields

◼ Thus, for a given waveguide geometry (𝜖 profile) there exists a stable solution to maxwell

equations following the form of the wave equation

4

𝑑2𝑢

𝑑𝑡2
= 𝑐2

𝑑2𝑢

𝑑𝑥2

𝑑2𝐸𝑥
𝑑𝑧2

= 𝜇𝜖
𝑑2𝐸𝑥
𝑑𝑡2

https://blog.soton.ac.uk/soundwaves/standing-waves/2-string-modes/

G
e

o
rg

ia
 T

e
c
h

 T
e

ra
b

it
 O

p
ti
c
a

l
N

e
tw

o
rk

in
g

 C
e

n
te

r
G

e
o

rg
ia

 T
e

c
h

 T
e

ra
b

it
 O

p
ti
c
a

l
N

e
tw

o
rk

in
g

 C
e

n
te

r

Mode Solver Problem Breakdown

5

(1) Define your geometry

(2) Create the maxwell operator matrix 𝑨
sparse matrix

𝜇−1∇× 𝜖−1∇× 𝐇 = 𝜔2𝐇

(3) Calculate the eigenvalues
This is where HPC comes into play

(4) Compute the mode fields (eigenvectors)

𝑨 =

A. B. Fallahkhair, K. S. Li and T. E. Murphy, "Vector Finite Difference Modesolver for Anisotropic Dielectric Waveguides", J. Lightw ave Technol. 26(11), 1423-1431, (2008).

G
e

o
rg

ia
 T

e
c
h

 T
e

ra
b

it
 O

p
ti
c
a

l
N

e
tw

o
rk

in
g

 C
e

n
te

r
G

e
o

rg
ia

 T
e

c
h

 T
e

ra
b

it
 O

p
ti
c
a

l
N

e
tw

o
rk

in
g

 C
e

n
te

r

Performance Metrics

◼Speed vs Resolution

For a given resolution, how long does the algorithm take to complete?

Focusing on GPU speedup—fix the number of processors, memory, etc.

Compare the accelerated version to the baseline open-source versions

◼Performance of the Resolution (convergence)

At what rate does the resolution increase as we allow for more execution time?

This needs to be at least O(∆n2)

With the speedup, we'll be able to more accurately calculate the convergence rate,

because we'll be able to simulate at higher resolutions

6

G
e

o
rg

ia
 T

e
c
h

 T
e

ra
b

it
 O

p
ti
c
a

l
N

e
tw

o
rk

in
g

 C
e

n
te

r
G

e
o

rg
ia

 T
e

c
h

 T
e

ra
b

it
 O

p
ti
c
a

l
N

e
tw

o
rk

in
g

 C
e

n
te

r

Baseline Metrics

◼ Current state-of-the-art mode solving represented by many open-source repositories

◼ Mpb

 https://github.com/NanoComp/mpb

 Implemented in C

 Includes implementation with distributed memory using MPI

◼ Empy

 Implemented in python

Fully vectorial finite difference method

 https://github.com/lbolla/EMpy

◼ Modesolver

 Implemented in python

 https://github.com/jtambasco/modesolverpy

7

https://github.com/NanoComp/mpb
https://github.com/lbolla/EMpy
https://github.com/jtambasco/modesolverpy

G
e

o
rg

ia
 T

e
c
h

 T
e

ra
b

it
 O

p
ti
c
a

l
N

e
tw

o
rk

in
g

 C
e

n
te

r
G

e
o

rg
ia

 T
e

c
h

 T
e

ra
b

it
 O

p
ti
c
a

l
N

e
tw

o
rk

in
g

 C
e

n
te

r

Solution: GPU Accelerated Mode Solver

◼Goal: Accelerate a presently implemented mode solver on a GPU

◼Design:

Start with existing solution (serial), open-source such as empy

Convert the eigenmode problem to be GPU compatible

◼ Will require parallelizable pre-conditioner

◼ Possible algorithms include locally block preconditioned conjugate gradient (LOBPCG)

Validate accuracy and determine GPU speed-up

◼Challenges:

Solving an eigenmode problem requires an iterative solution

Will have to take advantage of matrix sparsity to reduce gpu memory requirements

8

G
e

o
rg

ia
 T

e
c
h

 T
e

ra
b

it
 O

p
ti
c
a

l
N

e
tw

o
rk

in
g

 C
e

n
te

r
G

e
o

rg
ia

 T
e

c
h

 T
e

ra
b

it
 O

p
ti
c
a

l
N

e
tw

o
rk

in
g

 C
e

n
te

r

Taking Advantage of Matrix Sparsity on GPU

◼We can use the fact that matrices we will be working

with are sparse, i.e., very few coefficients are nonzero

values

◼Memory consumption can be reduced (and performance

increased) by using special representations of these

matrices, storing only the nonzero coefficients

◼For portions of the algorithm that involve multiplying

matrices, we can take advantage of Sparse-Matrix

Dense-Matrix Multiplication (SpMM) on CUDA

The cuSPARSE library provides cusparseSpMM for this

purpose

9https://developer.nvidia.com/blog/accelerating-matrix-multiplication-with-block-sparse-format-and-nvidia-tensor-cores/

G
e

o
rg

ia
 T

e
c
h

 T
e

ra
b

it
 O

p
ti
c
a

l
N

e
tw

o
rk

in
g

 C
e

n
te

r
G

e
o

rg
ia

 T
e

c
h

 T
e

ra
b

it
 O

p
ti
c
a

l
N

e
tw

o
rk

in
g

 C
e

n
te

r

Validation

◼Results will be compared against current open-source mode solvers

◼Multiple mode solvers will be used in tandem since accuracy also depends

on simulation resolution

10

G
e

o
rg

ia
 T

e
c
h

 T
e

ra
b

it
 O

p
ti
c
a

l
N

e
tw

o
rk

in
g

 C
e

n
te

r
G

e
o

rg
ia

 T
e

c
h

 T
e

ra
b

it
 O

p
ti
c
a

l
N

e
tw

o
rk

in
g

 C
e

n
te

r

Planned Experiments

◼ Datasets: Select three geometries (primarily isotropic but with consider anisotropic dielectrics)

Rectangular waveguide

Rib waveguide

Circular waveguide

◼ Testbed:

PACE Cluster (coc-ice, coc-ice-multi, coc-ice-gpu)

◼ Potential plots:

Speed vs Resolution

Performance vs Resolution (convergence)

11

Rectangular Waveguide Rib Waveguide Circular Waveguide

CSE 6230 Project Proposal:
Performance Analysis of Proxy-apps for
Computational Chemistry Methods

Shehan Parmar, Austin Wallace, Blair Johnson

Spring 2023

Project Category & Problem Definition
• Category: Scientific Application &

Reproducibility
• Problem Definition:

• Density Functional Theory (DFT) is
used to investigate properties of
molecular systems.

• DFT relies on solving the Kohn-
Sham equations, which require
computationally expensive
orthogonalization of large
matrices.

• Proxy apps can be used to reduce
development workload and yet
draw conclusions on code
performance on heterogeneous
architectures.

https://en.wikipedia.org/wiki/Density_functional_theory#/media/File:C60_isosurface.png

What are proxy apps?
• Proxy apps reduce the problem to essential

components to understand performance-
critical aspects of an algorithm.

• In this work, we will employ the Löwdin
orthonormalization of a tall-skinny matrix
as a proxy app for solving the KS equations.

• Other possible proxy-apps:
https://proxyapps.exascaleproject.org/app/

Procedure for Solving Kohn-Sham Equations

1. Compute the Gram
matrix 𝑆𝑆 = 𝐴𝐴𝑇𝑇𝐴𝐴

2. Compute 𝐶𝐶 = 𝑆𝑆1/2

3. Update A: 𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐴𝐴𝐴𝐴

Majid, M.F.; Mohd Zaid, H.F.; Kait, C.F.; Ahmad, A.; Jumbri, K. Ionic Liquid@Metal-Organic Framework as a Solid Electrolyte in a Lithium-Ion
Battery: Current Performance and Perspective at Molecular Level. Nanomaterials 2022, 12, 1076. https://doi.org/10.3390/nano12071076

Goals + Performance Metrics
Goals:
• Reproduce and benchmark method

from [1] on GT clusters
• Introduce and benchmark mixed

precision scheme
Performance Metrics
• Compute & communication time
• Iterations to convergence /

departure from orthogonality

[1] M. Lupo Pasini, B. Turcksin, W. Ge, and J.-L. Fattebert, “A parallel strategy for density functional theory
computations on accelerated nodes,” Parallel Computing, vol. 100, p. 102703, Dec. 2020, doi:
10.1016/j.parco.2020.102703.

Strong scaling benchmark method [1]

Baselines
• Cholesky factorization (CholeskyQR)
• Lowdin Orthonormalization from [1]

Proposed Solutions
• Validation:

• Pasini et al. Paper
• BLAS/Sequential version of orthonormalization

procedure

• Dataset: Use test cases from Pasini et al.
• Algorithm:

𝜽𝜽𝑺𝑺𝑺𝑺?

𝜽𝜽𝑫𝑫𝑫𝑫?

Experiments
• Potential Test Beds:

• COC-ICE
• HIVE (4 V100s/node, 16 nodes)
• ICEHAMMER

• Other Potential Plots:
• Wall clock time vs processes
• Communications time vs processes
• Compute time vs processes
• Strong and weak scaling
• Convergence iterations vs departure

from orthogonality vs mixed-precision
schedule

[1] M. Lupo Pasini, B. Turcksin, W. Ge, and J.-L. Fattebert, “A parallel strategy for density functional theory computations
on accelerated nodes,” Parallel Computing, vol. 100, p. 102703, Dec. 2020, doi: 10.1016/j.parco.2020.102703.

Runtime ratio between
method in [1] and

cuBLAS DGEMM as a
function of matrix size

MPI
Tasks

Matrix
Size

Alternate
Parallel

Strategy?

Benchmark Test

Mixed Precision
Test

Accelerating Discrete
Wavelet Transform

Project Category: Application
CSE 6230: High Performance Parallel Computing

Devashish Gupta, Parima Mehta, Rakesh Mugaludi

Introduction
• Discrete Wavelet Transform (DWT) is a powerful mathematical tool in

signal processing and multiresolution analysis
• It is a generalization of the Fast Fourier Transform that allows capturing

global and local features of the input data

Widely used 1D mother wavelets Multiresolution analysis

Problem
• DWT hierarchically decomposes the input into a basis of wavelets

derived from the 'mother wavelet'
• It involves repeated correlations of the input with the scaled

and shifted mother wavelets
• Complexity scales exponentially with increasing number of levels

Time-frequency resolution
allocation for time domain
data, FT, STFT and DWT.

Motivation
• Diverse applications:
• Image compression and denoising
• Gravitational wave detection and analysis
• EEG & ECG signal analysis
• Feature extraction for ML
• Multiresolution analysis of financial signals
• Seismic data analysis, earthquake prediction

• Improvements in time to solution would benefit processing large
images. Ex. James Webb Space Telescope generates 12.6GB of raw
image data/hour.

Solution
• DWT, especially Haar wavelet transform is

highly parallelizable as:
• It involves repeated correlations of the input

with the scaled and shifted mother wavelets
• Computation has temporal independence

within a level and spatial independence across
levels.
• High scope for data and computation reuse

with minimal communication.

Hierarchical basis for 1D Haar transform

Solution

Hierarchical basis for 2D Haar transform

• Challenges to tackle:
• Each level requires different amount

of computation
• Ensuring coalesced memory access
• Optimal domain decomposition for balanced

workload.

Goal: Improve time to solution for
1D & 2D Discrete Wavelet Transform

Validation

• Wavelet transforms having several components, the ability to compare
and validate each of these components would be important
for realizing a functionally equivalent parallel implementation
• We aim to validate our final output against existing implementations

such as in Matlab's Wavelet toolbox and GNU Scientific Library (GSL)
• These libraries support multiple wavelet transforms allowing us to

extend and compare against a wider set if time permits

Validation

• We further aim to focus on validating our implementation on tasks
such as signal decomposition (image compression) and signal
denoising

Datasets and Testbed

• All available license free signals (images) on the internet can be used
for both signal-decomposition and signal-denoising task. This gives us
access to a diverse signal-set with varying resolution and composition
• Gigapixel, Panoramic, and Deep Field Astronomy images would act as

large workloads to push our implementation to its limits

Datasets and Testbed

• Denoising literature and Kaggle have a large corpus of genuine
noisy image datasets such as for low-light photography and raw
sensor output. One can also generate noisy images synthetically
• We aim to test our implementation on NVIDIA V100 GPUs on the

PACE cluster

Add Noise

Performance Evaluation
• Baseline: Shared memory implementation using OpenMP

Image Resolution

Ex
ec

ut
io

n
Ti

m
e

(s
)

Performance Evaluation
• Baseline: Shared memory implementation using OpenMP

Wavelet Levels

Ex
ec

ut
io

n
Ti

m
e

(s
)

Thank you

CSE 6230 Project Proposal

Parallel Framework for Particle Dynamics Simulation

Category: Application

Yu Du
yudu@gatech.edu

Georgia Institute of Technology

March 2023

Qiang Wu
qwu350@gatech.edu

Changhai Man
cman8@gatech.edu

Motivation

Lots of applications calls for simulation frameworks
about large-scale particle systems!

• Astronomy:
Gravity simulations for galaxy systems.

• Chemistry & Biochemistry:
Molecular dynamics

• Electro-Dynamics:
Multiple particles moving

under electromagnetic fields (Accelerator, Tokamak)
• Fluid-Dynamics:

Smoothed Particle Hydrodynamics
• Many others...

Problem Abstraction

A set of particles 𝐩 ∈ 𝛀.
For each particle 𝒑, it has the position(assume in 3d) 𝒓, velocity 𝒗, and some other attributes 𝒔 (for example,
massive, charge, temperature, box volume, etc.)

𝒑 = 𝒓, 𝒗, 𝒔 , 𝒓 = 𝑥, 𝑦, 𝑧 , 𝒗 = 𝑣! , 𝑣" , 𝑣# , 𝒔 = (𝑚, 𝑞, …)
Between each particles, there is some interactions, for example, gravity, Coulomb, Van der waals force.

𝑓 𝒑$, 𝒑% ⋯𝑓 𝒑$, 𝒑&
⋮ ⋯ ⋮

𝑓 𝒑& , 𝒑$ ⋯𝑓(𝒑& , 𝒑&)
These interactions to one particle can be merged:

𝑓 𝒑𝒌, 𝛀 =7
(

𝑓(𝒑& , 𝒑()

And the interactions will affect the position of each particles along the time under certain timestep Δ𝑡:

𝒗𝒌 𝑡 + Δ𝑡 = 𝒗& 𝑡 +
𝑓(𝒑& , 𝛀)

𝑚
Δ𝑡

𝒓𝒌 𝑡 + ∆𝑡 = 2𝒓& 𝑡 − 𝒓& 𝑡 − ∆𝑡 +)(𝒑!,𝛀)
/

∆𝑡%

For particle dynamic systems, we have:

Proposed Solution

I. (CUDA-aware) MPI: Those particles
having interaction should be on the
same GPU (cut the computation by half)

II. Each block in charge of a predetermined
partition of the box
(less communication)

𝑝! 𝑝" 𝑝#
𝑝$ 𝑝% 𝑝&
𝑝' 𝑝(𝑝)

Computue
Region

Interaction
Region

All particles inside a box with/without Periodic Boundary Conditions (PBC)
Initial velocities and positions in shared memory; each GPU thread assess a local set of them

Simplification:
1. Use cutoff, outside which the forces can be neglected
2. Verlet Integrator on position, Leap-Frog Integrator on velocity

Which GPU
block assess
which subset of
particles?

Framework Overview

User-
defined

GUI for user input

Parallel computations (CUDA only and/or MPI+CUDA)

…
..

Parallel
units

Simulation outputs

Experiment Setup
• Testbed: PACE
• Validation: 1. Compare with the sequential version of our algorithm

2. Check if results comply with Van der waals equation 𝑃 + 0"1
2"

𝑉 − 𝑛𝑏 = 𝑛𝑅𝑇
3. Output data alignment with respect to cutoffs

• Baseline (benchmark): To be determined, will be from one or more of the three categories
1. Public academic / business repositories (e.g., this simulation demo)
2. Published simulation software (e.g., PDPS)

(Both of which can find sequential / parallel realizations)
3. Reproduce paper results for comparison

• Datasets: Randomly Initialized (will refer to public datasets like PubChem)
• Metrics:

1. Speedup=3(0,$)
3(0,4)

(compare our computation time with other solutions)

2. Roofline Model
3. Produce strong scaling plot

Summary
• Category: Application
• Problem: Large-scale Particle Dynamics Simulation
• Performance Metric: Speedup + Roofline Model
• Baseline: Our sequential version
• Solution:

1) MPI+CUDA. 2) Partition with cut-off range.
3) Periodic re-partition for tradeoff of acc & perf.

• Validation:
1) Try to find some benchmark.
2) If no benchmark, try to simulate some real-world phenomenon.
3) Find some constant variable in system, try to verify it so not change during simulation.

• Test bed: PACE COC-ICE, AWS if possible (might need some sponsorship LOL)
• Potential plots:

1) Speedup and Strong Scaling. 2) Performance breakup
3) Simulation results rendering.

Q&A

Georgia Institute of Technology

March 2023

Yu Du
yudu@gatech.edu

Qiang Wu
qwu350@gatech.edu

Changhai Man
cman8@gatech.edu

Distributed Hyperparameter Tuning for
Machine Learning Potentials in Catalysis

CSE6320: High Performance Parallel Computing

Project Proposal
March 14, 2023

Omar Jiménez

Motivation: Data-Driven Catalyst Discovery Workflow

CSE6320: High Performance Parallel Computing 1

ML -> Training ->
Hyperparameters

also involves ML, but not
planning to focus on this

component for this project

*many variations, this is
just one example

Project

CSE6320: High Performance Parallel Computing 2

Project Type: Application. I will integrate distributed hyperparameter
search algorithms into training of ML potentials relevant to data-
driven catalyst discovery workflows

Original idea from Piazza
post on 03/08/23

Problem Statement

Problem: Depending on the search space, search algorithms
for hyperparameter tuning can be computationally expensive
(from hours to days). State-of-the-art packages for training of
ML potentials (e.g., SchNetPack, AMPTorch, etc.) do not
support distributed hyperparameter tuning.

Solution: Distributed Hyperparameter Search

3CSE6320: High Performance Parallel Computing

Performance Category: Time to solution

Solution

4

Important: Parallelization “friendliness” (i.e., parallel algorithms already
exist or easily adapted – inventing algorithms is outside scope of project).

Solution: Distributed Hyperparameter Search. Different algorithms for
distributed search might be considered.

Grid Search classical example and very easy to
distribute (independency of computations).
Other algorithms might be considered.

Hyperparameter 1

Hy
pe

rp
ar

am
et

er
 2

CSE6320: High Performance Parallel Computing

Baselines

Single

5CSE6320: High Performance Parallel Computing

Performance Category: Time to solution

Multi

Ti
m

e

Validation

6CSE6320: High Performance Parallel Computing

Important: Some Hyperparameter Search Algorithms are not deterministic
and may not return the same “optimal hyperparameters” between trials.

Validation: Relative model accuracy improvement w.r.t. sequential output

Single Multi

Ac
cu

ra
cy

(Optimized) (Optimized)

*If “deterministic” (e.g., Grid Search),
direct validation could be conducted in
theory. However, even for same set of
hyperparameters, this is still subject to a
small amount of variance in training
(depending on ML algorithms).

Experiments

7CSE6320: High Performance Parallel Computing

Dataset

• Open Catalyst 2020 (OC20) Dataset
• Dataset of DFT calculations for catalysis

systems with high chemical diversity
• Small chunk of it. Full dataset has

millions of data points which is not
feasible given resource constraints

Experiments

8CSE6320: High Performance Parallel Computing

Testbed

• Either PACE or cloud services (AWS/Azure/GCP)
• PACE usage ultimately depends on whether I can

install all necessary dependencies to run the codes
• PACE should be possible since I have successfully

installed some of the packages already (e.g., Atomic
Simulation Environment library)

Experiments

9CSE6320: High Performance Parallel Computing

Results Validation

1. Faster?

Single Multi

Ti
m

e

2. Model accuracies comparable?

Single Multi

Ac
cu

ra
cy

(Optimized) (Optimized)

Accelerate Tensor Computation Leveraging
TVM and SIMD on ARM CPU

Fan Qu, Peidi Song

1

CONTENTS

1 Category 2 Problem

3 Performance Metric 4 Baselines

5 Solution 6 Validation

7 Datasets 8 Platforms

9 Potential Plots

2

10 References

Category
● Application

○ In detail, our focus is on developing a practical solution to
accelerate tensor computation

3

Problem
● Tensor computation

○ Widely used in neural networks
○ E.g., GEMM, Convolution, Nomalization
○ Computationally expensive and time-consuming, particularly on ARM CPUs

● Goal
○ Accelerate tensor computation on ARM CPUs
○ Leverages TVM and SIMD technology

4

Performance Metrics
• Runtime for data of different of size

• Evaluate different tensor operations

5

Baselines
• PyTorch
• TensorFlow
• AutoTVM
• Ansor
• …

6

TVM
Solution

• A Python interface end-to-end compiler framework for CPU, GPU,
and accelerators

• Seperate computation and optimization
○ Define computation

■ C = sum(A[i,k]*B[k,j], reduce=k)
○ Define schedule primitive

■ io, ii = split(i, factor=8)
■ reorder(io, jo, ko, ki, ii, ji)

7

NEON SIMD Instructions
Solution

• NEON is a technology that enables parallel processing
on ARM CPUs.

• Vectorization: processing multiple elements of the
tensors at the same time

• Low-Level Optimization: loop unrolling and memory
alignment to maximize the performance

8

Solution

• Optimization steps
○ Tensor computation definition from mathematical formula
○ Handwritten NEON SIMD vectorized kernel
○ TVM schedule primitives for blocking (tiling)
○ Integrate them and generate optimized codes

9

We will use the calculation result of PyTorch as the ground truth.

Validation

10

● Different operators
○ GEMM
○ Convolution 2D
○ BatchNorm
○ …

● Different tensor sizes
● Generate tensors randomly

Datasets

11

We plan to optimize common CPUs for consumers
and servers.

Platforms

12

● Apple Silicon
● AWS Graviton processors

● Performance Comparison Bar Charts
○ x-axis: operator × size × method
○ y-axis: runtime

Potential Plots

13

● Performance Comparison Line Charts
○ x-axis: size
○ y-axis: runtime
○ lines: different methods

● Paszke, Adam, et al. "Pytorch: An imperative style, high-performance deep learning library."
Advances in neural information processing systems 32 (2019).

● Abadi, Martín, et al. "Tensorflow: a system for large-scale machine learning." Osdi. Vol. 16. No.
2016. 2016.

● Chen, Tianqi, et al. "TVM: An automated end-to-end optimizing compiler for deep learning." arXiv
preprint arXiv:1802.04799 (2018).

● Chen, Tianqi, et al. "Learning to optimize tensor programs." Advances in Neural Information
Processing Systems 31 (2018).

● Zheng, Lianmin, et al. "Ansor: Generating high-performance tensor programs for deep learning."
Proceedings of the 14th USENIX Conference on Operating Systems Design and Implementation.
2020.

References

14

Thanks

15

	Slide 1
	Slide 2: Dielectric Waveguide Mode Solver
	Slide 3: Understanding Light Propagation
	Slide 4: Understanding Waveguide Modes
	Slide 5: Mode Solver Problem Breakdown
	Slide 6: Performance Metrics
	Slide 7: Baseline Metrics
	Slide 8: Solution: GPU Accelerated Mode Solver
	Slide 9: Taking Advantage of Matrix Sparsity on GPU
	Slide 10: Validation
	Slide 11: Planned Experiments

