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Dielectric Waveguide Mode Solver

◼ Goal: Find solution to maxwell’s equations for a given 

geometry

 Iterative eigenvalue problem with sparse matrices

◼ Current challenges:

Solving for eigenvalues is an expensive calculation

 Limited to smaller structures at lower resolutions

Speed-up can enable:

◼ faster device design and optimizations

◼ higher resolution calculations (more accurate)

◼ Existing work:

A GPU Solver for Sparse Generalized Eigenvalue Problems With 

Symmetric Complex-Valued Matrices Obtained Using Higher-

Order FEM: 

https://ieeexplore.ieee.org/iel7/6287639/8274985/08468163.pdf

This work uses the finite-element method (FEM), which isn't 

scalable to larger geometries. We will use the finite-difference 

method (FD) 2

𝜇−1∇× 𝜖−1∇× 𝐇 = 𝜔2𝐇

https://ieeexplore.ieee.org/iel7/6287639/8274985/08468163.pdf

https://ieeexplore.ieee.org/iel7/6287639/8274985/08468163.pdf
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Understanding Light Propagation 

◼ Light is described with both an electric field, 𝐸, and a magnetic field, 𝐻

Each field has three components (x, y, z)

Total of 6 field components (𝐸𝑥, 𝐸𝑦 , 𝐸𝑧 , 𝐻𝑥, 𝐻𝑦 , 𝐻𝑧)

Each field is a function of position and time

◼ How are the fields connected? - Maxwell equations

◼ Time varying magnetic fields induce spatial varying electric fields (and vice versa)

Time varying fields can also be considered in frequency domain using a fourier transform

3
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Understanding Waveguide Modes

◼ Traditional wave equation is of the form:

◼ Solution 𝑢 = 𝐴 sin(𝑘𝑥 + 𝜔𝑡)

𝜔 is time dependence

 𝑘 is the spatial dependence (wave vector)

◼ A mode is one of these solutions to the wave equation

 It is a spatially stable solution

Each mode is defined by its wave vector k

◼ Light is a wave!

◼ We can combine maxwell’s equations to get a similar form for the E and H fields

◼ Thus, for a given waveguide geometry (𝜖 profile) there exists a stable solution to maxwell 

equations following the form of the wave equation

4

𝑑2𝑢

𝑑𝑡2
= 𝑐2

𝑑2𝑢

𝑑𝑥2

𝑑2𝐸𝑥
𝑑𝑧2

= 𝜇𝜖
𝑑2𝐸𝑥
𝑑𝑡2

https://blog.soton.ac.uk/soundwaves/standing-waves/2-string-modes/
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Mode Solver Problem Breakdown

5

(1) Define your geometry

(2) Create the maxwell operator matrix 𝑨
sparse matrix

𝜇−1∇× 𝜖−1∇× 𝐇 = 𝜔2𝐇

(3) Calculate the eigenvalues
This is where HPC comes into play

(4) Compute the mode fields (eigenvectors)

𝑨 =

A. B. Fallahkhair, K. S. Li and T. E. Murphy, "Vector Finite Difference Modesolver for Anisotropic Dielectric Waveguides", J. Lightw ave Technol. 26(11), 1423-1431, (2008).
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Performance Metrics

◼Speed vs Resolution

For a given resolution, how long does the algorithm take to complete?

Focusing on GPU speedup—fix the number of processors, memory, etc.

Compare the accelerated version to the baseline open-source versions

◼Performance of the Resolution (convergence)

At what rate does the resolution increase as we allow for more execution time?

This needs to be at least O(∆n2)

With the speedup, we'll be able to more accurately calculate the convergence rate,

because we'll be able to simulate at higher resolutions

6
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Baseline Metrics

◼ Current state-of-the-art mode solving represented by many open-source repositories

◼ Mpb

 https://github.com/NanoComp/mpb

 Implemented in C

 Includes implementation with distributed memory using MPI

◼ Empy

 Implemented in python

Fully vectorial finite difference method

 https://github.com/lbolla/EMpy

◼ Modesolver

 Implemented in python

 https://github.com/jtambasco/modesolverpy

7

https://github.com/NanoComp/mpb
https://github.com/lbolla/EMpy
https://github.com/jtambasco/modesolverpy
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Solution: GPU Accelerated Mode Solver

◼Goal: Accelerate a presently implemented mode solver on a GPU

◼Design:

Start with existing solution (serial), open-source such as empy

Convert the eigenmode problem to be GPU compatible

◼ Will require parallelizable pre-conditioner

◼ Possible algorithms include locally block preconditioned conjugate gradient (LOBPCG)

Validate accuracy and determine GPU speed-up

◼Challenges:

Solving an eigenmode problem requires an iterative solution

Will have to take advantage of matrix sparsity to reduce gpu memory requirements

8



G
e

o
rg

ia
 T

e
c
h

 T
e

ra
b

it
 O

p
ti
c
a

l 
N

e
tw

o
rk

in
g

 C
e

n
te

r
G

e
o

rg
ia

 T
e

c
h

 T
e

ra
b

it
 O

p
ti
c
a

l 
N

e
tw

o
rk

in
g

 C
e

n
te

r

Taking Advantage of Matrix Sparsity on GPU

◼We can use the fact that matrices we will be working 

with are sparse, i.e., very few coefficients are nonzero 

values

◼Memory consumption can be reduced (and performance 

increased) by using special representations of these 

matrices, storing only the nonzero coefficients

◼For portions of the algorithm that involve multiplying 

matrices, we can take advantage of Sparse-Matrix 

Dense-Matrix Multiplication (SpMM) on CUDA

The cuSPARSE library provides cusparseSpMM for this 

purpose

9https://developer.nvidia.com/blog/accelerating-matrix-multiplication-with-block-sparse-format-and-nvidia-tensor-cores/
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Validation

◼Results will be compared against current open-source mode solvers

◼Multiple mode solvers will be used in tandem since accuracy also depends 

on simulation resolution

10
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Planned Experiments

◼ Datasets: Select three geometries (primarily isotropic but with consider anisotropic dielectrics)

Rectangular waveguide

Rib waveguide 

Circular waveguide 

◼ Testbed:

PACE Cluster (coc-ice, coc-ice-multi, coc-ice-gpu)

◼ Potential plots:

Speed vs Resolution

Performance vs Resolution (convergence)

11

Rectangular Waveguide Rib Waveguide Circular Waveguide
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Project Category & Problem Definition
• Category: Scientific Application & 

Reproducibility 
• Problem Definition:

• Density Functional Theory (DFT) is 
used to investigate properties of 
molecular systems. 

• DFT relies on solving the Kohn-
Sham equations, which require 
computationally expensive 
orthogonalization of large 
matrices. 

• Proxy apps can be used to reduce 
development workload and yet 
draw conclusions on code 
performance on heterogeneous 
architectures.

https://en.wikipedia.org/wiki/Density_functional_theory#/media/File:C60_isosurface.png



What are proxy apps? 
• Proxy apps reduce the problem to essential 

components to understand performance-
critical aspects of an algorithm. 

• In this work, we will employ the Löwdin 
orthonormalization of a tall-skinny matrix
as a proxy app for solving the KS equations. 

• Other possible proxy-apps: 
https://proxyapps.exascaleproject.org/app/



Procedure for Solving Kohn-Sham Equations

1. Compute the Gram 
matrix 𝑆𝑆 = 𝐴𝐴𝑇𝑇𝐴𝐴

2. Compute 𝐶𝐶 = 𝑆𝑆1/2

3. Update A: 𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐴𝐴𝐴𝐴

Majid, M.F.; Mohd Zaid, H.F.; Kait, C.F.; Ahmad, A.; Jumbri, K. Ionic Liquid@Metal-Organic Framework as a Solid Electrolyte in a Lithium-Ion 
Battery: Current Performance and Perspective at Molecular Level. Nanomaterials 2022, 12, 1076. https://doi.org/10.3390/nano12071076



Goals + Performance Metrics
Goals:
• Reproduce and benchmark method 

from [1] on GT clusters
• Introduce and benchmark mixed 

precision scheme
Performance Metrics
• Compute & communication time
• Iterations to convergence / 

departure from orthogonality

[1] M. Lupo Pasini, B. Turcksin, W. Ge, and J.-L. Fattebert, “A parallel strategy for density functional theory 
computations on accelerated nodes,” Parallel Computing, vol. 100, p. 102703, Dec. 2020, doi: 
10.1016/j.parco.2020.102703.

Strong scaling benchmark method [1]



Baselines
• Cholesky factorization (CholeskyQR)
• Lowdin Orthonormalization from [1]



Proposed Solutions
• Validation: 

• Pasini et al. Paper
• BLAS/Sequential version of orthonormalization 

procedure

• Dataset: Use test cases from Pasini et al.
• Algorithm:

𝜽𝜽𝑺𝑺𝑺𝑺?

𝜽𝜽𝑫𝑫𝑫𝑫?



Experiments
• Potential Test Beds:

• COC-ICE 
• HIVE (4 V100s/node, 16 nodes)
• ICEHAMMER

• Other Potential Plots:
• Wall clock time vs processes
• Communications time vs processes
• Compute time vs processes
• Strong and weak scaling
• Convergence iterations vs departure 

from orthogonality vs mixed-precision 
schedule

[1] M. Lupo Pasini, B. Turcksin, W. Ge, and J.-L. Fattebert, “A parallel strategy for density functional theory computations 
on accelerated nodes,” Parallel Computing, vol. 100, p. 102703, Dec. 2020, doi: 10.1016/j.parco.2020.102703.

Runtime ratio between 
method in [1] and 

cuBLAS DGEMM as a 
function of matrix size

MPI 
Tasks

Matrix 
Size

Alternate 
Parallel 

Strategy?

Benchmark Test

Mixed Precision 
Test
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Introduction
• Discrete Wavelet Transform (DWT) is a powerful mathematical tool in

signal processing and multiresolution analysis
• It is a generalization of the Fast Fourier Transform that allows capturing

global and local features of the input data

Widely used 1D mother wavelets Multiresolution analysis



Problem
• DWT hierarchically decomposes the input into a basis of wavelets

derived from the 'mother wavelet'
• It involves repeated correlations of the input with the scaled

and shifted mother wavelets
• Complexity scales exponentially with increasing number of levels

Time-frequency resolution 
allocation for time domain 
data, FT, STFT and DWT.



Motivation
• Diverse applications:
• Image compression and denoising
• Gravitational wave detection and analysis
• EEG & ECG signal analysis
• Feature extraction for ML
• Multiresolution analysis of financial signals
• Seismic data analysis, earthquake prediction

• Improvements in time to solution would benefit processing large
images. Ex. James Webb Space Telescope generates 12.6GB of raw
image data/hour.



Solution
• DWT, especially Haar wavelet transform is 

highly parallelizable as:
• It involves repeated correlations of the input

with the scaled and shifted mother wavelets
• Computation has temporal independence

within a level and spatial independence across
levels.
• High scope for data and computation reuse

with minimal communication.

Hierarchical basis for 1D Haar transform



Solution

Hierarchical basis for 2D Haar transform

• Challenges to tackle:
• Each level requires different amount 

of computation
• Ensuring coalesced memory access
• Optimal domain decomposition for balanced 

workload.

Goal: Improve time to solution for
1D & 2D Discrete Wavelet Transform



Validation

• Wavelet transforms having several components, the ability to compare
and validate each of these components would be important
for realizing a functionally equivalent parallel implementation
• We aim to validate our final output against existing implementations

such as in Matlab's Wavelet toolbox and GNU Scientific Library (GSL)
• These libraries support multiple wavelet transforms allowing us to

extend and compare against a wider set if time permits



Validation

• We further aim to focus on validating our implementation on tasks
such as signal decomposition (image compression) and signal
denoising



Datasets and Testbed

• All available license free signals (images) on the internet can be used
for both signal-decomposition and signal-denoising task. This gives us
access to a diverse signal-set with varying resolution and composition
• Gigapixel, Panoramic, and Deep Field Astronomy images would act as

large workloads to push our implementation to its limits



Datasets and Testbed

• Denoising literature and Kaggle have a large corpus of genuine
noisy image datasets such as for low-light photography and raw
sensor output. One can also generate noisy images synthetically
• We aim to test our implementation on NVIDIA V100 GPUs on the

PACE cluster

Add Noise



Performance Evaluation
• Baseline: Shared memory implementation using OpenMP

Image Resolution
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Performance Evaluation
• Baseline: Shared memory implementation using OpenMP

Wavelet Levels
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Thank you
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Motivation

Lots of applications calls for simulation frameworks 
about large-scale particle systems!

• Astronomy: 
Gravity simulations for galaxy systems.

• Chemistry & Biochemistry: 
Molecular dynamics

• Electro-Dynamics:
Multiple particles moving 

under electromagnetic fields (Accelerator, Tokamak)
• Fluid-Dynamics:

Smoothed Particle Hydrodynamics
• Many others...



Problem Abstraction

A set of particles 𝐩 ∈ 𝛀.
For each particle 𝒑, it has the position(assume in 3d) 𝒓, velocity 𝒗, and some other attributes 𝒔 (for example, 
massive, charge, temperature, box volume, etc.)

𝒑 = 𝒓, 𝒗, 𝒔 , 𝒓 = 𝑥, 𝑦, 𝑧 , 𝒗 = 𝑣! , 𝑣" , 𝑣# , 𝒔 = (𝑚, 𝑞, … )
Between each particles, there is some interactions, for example, gravity, Coulomb, Van der waals force.

𝑓 𝒑$, 𝒑% ⋯𝑓 𝒑$, 𝒑&
⋮ ⋯ ⋮

𝑓 𝒑& , 𝒑$ ⋯𝑓(𝒑& , 𝒑&)
These interactions to one particle can be merged:

𝑓 𝒑𝒌, 𝛀 =7
(

𝑓(𝒑& , 𝒑()

And the interactions will affect the position of each particles along the time under certain timestep Δ𝑡:

𝒗𝒌 𝑡 + Δ𝑡 = 𝒗& 𝑡 +
𝑓(𝒑& , 𝛀)

𝑚
Δ𝑡

𝒓𝒌 𝑡 + ∆𝑡 = 2𝒓& 𝑡 − 𝒓& 𝑡 − ∆𝑡 + )(𝒑!,𝛀)
/

∆𝑡%

For particle dynamic systems, we have:



Proposed Solution

I. (CUDA-aware) MPI: Those particles 
having interaction should be on the 
same GPU (cut the computation by half)

II. Each block in charge of a predetermined 
partition of the box 
(less communication)

𝑝! 𝑝" 𝑝#
𝑝$ 𝑝% 𝑝&
𝑝' 𝑝( 𝑝)

Computue 
Region

Interaction 
Region

All particles inside a box with/without Periodic Boundary Conditions (PBC)
Initial velocities and positions in shared memory; each GPU thread assess a local set of them

Simplification:
1. Use cutoff, outside which the forces can be neglected
2. Verlet Integrator on position, Leap-Frog Integrator on velocity

Which GPU 
block assess 
which subset of 
particles?



Framework Overview

User-
defined

GUI for user input

Parallel computations (CUDA only and/or MPI+CUDA)

…
..

Parallel 
units

Simulation outputs



Experiment Setup
• Testbed: PACE
• Validation: 1. Compare with the sequential version of our algorithm

2. Check if results comply with Van der waals equation 𝑃 + 0"1
2"

𝑉 − 𝑛𝑏 = 𝑛𝑅𝑇
3. Output data alignment with respect to cutoffs

• Baseline (benchmark): To be determined, will be from one or more of the three categories
1. Public academic / business repositories (e.g., this simulation demo )
2. Published simulation software (e.g., PDPS)

(Both of which can find sequential / parallel realizations)
3. Reproduce paper results for comparison

• Datasets: Randomly Initialized (will refer to public datasets like PubChem)
• Metrics:

1. Speedup=3(0,$)
3(0,4)

(compare our computation time with other solutions)

2. Roofline Model
3. Produce strong scaling plot



Summary
• Category: Application
• Problem: Large-scale Particle Dynamics Simulation
• Performance Metric: Speedup + Roofline Model
• Baseline: Our sequential version
• Solution: 

1) MPI+CUDA.          2) Partition with cut-off range.  
3) Periodic re-partition for tradeoff of acc & perf.

• Validation: 
1) Try to find some benchmark. 
2) If no benchmark, try to simulate some real-world phenomenon.
3) Find some constant variable in system, try to verify it so not change during simulation.

• Test bed: PACE COC-ICE, AWS if possible (might need some sponsorship LOL)
• Potential plots: 

1) Speedup and Strong Scaling.     2) Performance breakup
3) Simulation results rendering. 
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Motivation: Data-Driven Catalyst Discovery Workflow

CSE6320: High Performance Parallel Computing 1

ML -> Training -> 
Hyperparameters

also involves ML, but not 
planning to focus on this

component for this project

*many variations, this is 
just one example 



Project

CSE6320: High Performance Parallel Computing 2

Project Type: Application. I will integrate distributed hyperparameter
search algorithms into training of ML potentials relevant to data-
driven catalyst discovery workflows

Original idea from Piazza 
post on 03/08/23



Problem Statement

Problem: Depending on the search space, search algorithms
for hyperparameter tuning can be computationally expensive
(from hours to days). State-of-the-art packages for training of
ML potentials (e.g., SchNetPack, AMPTorch, etc.) do not
support distributed hyperparameter tuning.

Solution: Distributed Hyperparameter Search

3CSE6320: High Performance Parallel Computing

Performance Category: Time to solution



Solution

4

Important: Parallelization “friendliness” (i.e., parallel algorithms already
exist or easily adapted – inventing algorithms is outside scope of project).

Solution: Distributed Hyperparameter Search. Different algorithms for 
distributed search might be considered. 

Grid Search classical example and very easy to 
distribute (independency of computations). 
Other algorithms might be considered. 

Hyperparameter 1

Hy
pe

rp
ar

am
et

er
 2

CSE6320: High Performance Parallel Computing



Baselines

Single

5CSE6320: High Performance Parallel Computing

Performance Category: Time to solution

Multi

Ti
m

e



Validation 

6CSE6320: High Performance Parallel Computing

Important: Some Hyperparameter Search Algorithms are not deterministic 
and may not return the same “optimal hyperparameters” between trials.

Validation: Relative model accuracy improvement w.r.t. sequential output

Single Multi

Ac
cu

ra
cy

(Optimized) (Optimized)

*If “deterministic” (e.g., Grid Search), 
direct validation could be conducted in 
theory. However, even for same set of 
hyperparameters, this is still subject to a 
small amount of variance in training 
(depending on ML algorithms). 



Experiments

7CSE6320: High Performance Parallel Computing

Dataset

• Open Catalyst 2020 (OC20) Dataset 
• Dataset of DFT calculations for catalysis

systems with high chemical diversity
• Small chunk of it. Full dataset has 

millions of data points which is not 
feasible given resource constraints  



Experiments

8CSE6320: High Performance Parallel Computing

Testbed

• Either PACE or cloud services (AWS/Azure/GCP)
• PACE usage ultimately depends on whether I can 

install all necessary dependencies to run the codes
• PACE should be possible since I have successfully 

installed some of the packages already (e.g., Atomic 
Simulation Environment library)



Experiments

9CSE6320: High Performance Parallel Computing

Results Validation

1. Faster?

Single Multi

Ti
m

e

2. Model accuracies comparable?

Single Multi

Ac
cu

ra
cy

(Optimized) (Optimized)
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9 Potential Plots

2
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Category
● Application

○ In detail, our focus is on developing a practical solution to 
accelerate tensor computation

3



Problem
● Tensor computation

○ Widely used in neural networks
○ E.g., GEMM, Convolution, Nomalization
○ Computationally expensive and time-consuming, particularly on ARM CPUs

● Goal
○ Accelerate tensor computation on ARM CPUs
○ Leverages TVM and SIMD technology

4



Performance Metrics
• Runtime for data of different of size

• Evaluate different tensor operations

5



Baselines
• PyTorch
• TensorFlow
• AutoTVM
• Ansor
• …

6



TVM
Solution

• A Python interface end-to-end compiler framework for CPU, GPU, 
and accelerators

• Seperate computation and optimization
○ Define computation

■ C = sum(A[i,k]*B[k,j], reduce=k)
○ Define schedule primitive

■ io, ii = split(i, factor=8)
■ reorder(io, jo, ko, ki, ii, ji)
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NEON SIMD Instructions
Solution

• NEON is a technology that enables parallel processing 
on ARM CPUs.

• Vectorization: processing multiple elements of the 
tensors at the same time

• Low-Level Optimization: loop unrolling and memory 
alignment to maximize the performance
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Solution

• Optimization steps
○ Tensor computation definition from mathematical formula
○ Handwritten NEON SIMD vectorized kernel
○ TVM schedule primitives for blocking (tiling)
○ Integrate them and generate optimized codes
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We will use the calculation result of PyTorch as the ground truth.

Validation
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● Different operators
○ GEMM
○ Convolution 2D
○ BatchNorm
○ …

● Different tensor sizes
● Generate tensors randomly

Datasets
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We plan to optimize common CPUs for consumers 
and servers.

Platforms
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● Apple Silicon
● AWS Graviton processors



● Performance Comparison Bar Charts
○ x-axis: operator × size × method
○ y-axis: runtime

Potential Plots
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● Performance Comparison Line Charts
○ x-axis: size
○ y-axis: runtime
○ lines: different methods
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