
Accelerating
K-means
Clustering
Sreemanth Prathipati and Sooraj Karthik

● Very widely used
○ Image compression
○ Video recommendation systems
○ Insurance fraud detection

● Algorithm
○ Randomly initialize cluster centers
○ Assign points to centers based on distance
○ Adjust centers to mean of assigned points

● Potential for GPU acceleration
○ Most of the algorithm is embarrassingly parallel

Background and Motivation

Problem Category and Definition

● Problem
○ Accelerate K-means Clustering using GPU

● Categories
○ Reproduce results from prior publications
○ See if we can discover any novel approaches to solve the problem more

efficiently

Performance Metrics

● Most papers look at two metrics

● Execution time per iteration (ms)

● Performance (FLOPS)

Baselines

● Sequential implementation

● OpenMP implementation

● sklearn implementation

● Results from prior papers
○ Lutz et. al (2018) [1]
○ Shahrezaei and Tavoli (2019) [2]
○ Yang et. al. (2020) [3]

Proposed Solution

● Implement single pass algorithm
○ Proposed by Lutz et al in 2018 [1]
○ Remove implicit barrier between calculating cluster assignment and

recalculating cluster centers

● Vectorized loads and computation

● Texture memory

● K-means algorithm is deterministic once initial cluster centers are chosen

● Fix the initial clusters to some predetermined values

● Run accelerated and sequential algorithms on same data

● Compare outputs and see if final cluster centers are within a tolerance

Validation

Dataset and Testbed

● Dataset
○ Randomly generated vectors
○ General acceleration for k-means, not specific use-cases

● Test System
○ College of Computing PACE Multi and GPU Clusters
○ Test Sequential, OpenMP, and sklearn baselines on 120 cores
○ Test GPU code on Tesla V100 GPU

Experiments and Potential Plots

● Line Plots
○ x-axis

■ Vary dimensionality of data (2, 4, 8, 16, 32, 64, 128, 256 dimensions)
■ Vary number of clusters (2, 4, 8, 16, 32, 64, 128, 256 clusters)
■ Vary number of points (1k, 5k, 10k, 20k, 50k, 100k, 250k, 500k)

○ y-axis
■ Measure time per iteration
■ Measure peak performance in FLOPS

● Breakdown plot
○ Time spent in different parts of the algorithm (cluster assignment, recentering, etc.)
○ Compare breakdowns for OpenMP and GPU implementations

References

[1] Clemens Lutz, Sebastian Breß, Tilmann Rabl, Steffen Zeuch, and Volker Markl. 2018.
Efficient and Scalable k-Means on GPUs. In Datenbank-Spektrum volume 18, pages
157–169.

[2] Maliheh Heydarpour Shahrezaei and Reza Tavoli. 2019. Parallelization of Kmeans++
using CUDA. arXiv:1908.02136.

[3] Can Yang, Yin Li, and Fenhua Cheng. 2020. Accelerating k-Means on GPU with CUDA
Programming. doi:10.1088/1757-899X/790/1/012036.

Thank You!

Accelerating Proximal Policy
Optimization (PPO)

Akhil Goel, Matthew Woodward, Qingyu Xiao

Outline

● Problem Definition
● Project Category & Performance Metric
● Baselines & Dataset
● Proposed Solution
● Validation
● Experimental Design & Possible Roadblocks

Problem Definition

● Reinforcement Learning
● Accelerate with GPUs
● Scale with HPC Cluster?
● Profiling of bottlenecks

ー Compute Time
■ Environment Simulation
■ Parameter Updates

ー Memory Time
ー Communication Time

Training time steps is very large, roughly 5e7 time steps

Project Category & Performance Metric

● Reproducibility: DD-PPO (https://arxiv.org/abs/1911.00357)
ー Decentralized Distributed Proximal Policy Optimization

● Performance Modeling: Scaling & Profiling Bottlenecks

https://www.youtube.com/watch?v=lYP3cF2wqOY

Baselines & Dataset

● Classical PPO (https://arxiv.org/abs/1707.06347)
ー Single Worker

● OpenAI Gym RL Environments
ー Mountain Car
ー Atari (ported to GPU acceleration)

Proposed Solution

● DD-PPO
ー Decentralized synchronous update with worker pre-emption
ー GPU Acceleration of Environments (CuLE)

Validation

● PPO on Single GPU
● Performance Baseline

ー Fixed # of frames / samples to train on
ー Measure training time and samples of experience / second

● “Correctness” of results is difficult to measure
ー Training updates are stochastic in nature
ー Measuring “success” of agent is nebulous

● Isolate a small, deterministic example to compare weights

Why not centralized asynchronous PPO?

● “Asynchronous Distribution is notoriously difficult”
ー Unrealistic to implement

● Compute Resources
ー Limitations of scaling (synchronization strategy tradeoffs)

difficult to test at our level of scale
● CPU vs GPU accelerated simulation of environment

ー Our environment is more computationally simple
ー Environment acceleration is preferred anyway

Experimental Design
● Test Bed: COC-ICE-GPU
● “Static” Variables

ー Environment Acceleration
● Independent Variables

ー Number of Workers
ー Pre-Emption Threshold

● Dependent Variables
ー Steps of experience per second
ー Compute time breakdown

https://www.bu.edu/exafmm/documentation/performance/

References
● Wijmans, E., Kadian, A., Morcos, A., Lee, S., Essa, I., Parikh, D., ... & Batra, D.

(2019). DD-PPO: Learning near-perfect pointgoal navigators from 2.5 billion
frames. arXiv preprint arXiv:1911.00357.

● Tang, Yunhao & Agrawal, Shipra. (2020). Discretizing Continuous Action
Space for On-Policy Optimization. Proceedings of the AAAI Conference on
Artificial Intelligence. 34. 5981-5988. 10.1609/aaai.v34i04.6059.

● Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017).
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347.

GPU-Accelerated Algebraic Multigrid Methods (AMG)

Bao Li
CSE 6230 – Spring 2023

• Category:
• AMG Solver (V-cycles): apply to structural optimization
• the AMG algorithm solves the large (fine) linear system by cycling through levels

composed of smaller (coarse) linear systems and finding updates that bring one
closer to the exact solution

Category

• 𝑀: preconditioner or smoothers that removes high frequency errors corresponding to matrix 𝐴
• 𝐶𝑒 = 𝑔: coarse linear system
• 𝑃: prolongation and restriction matrices allow us to transition from coarse to fine and fine to

coarse levels of the grid

Problem Statement
• Objective

• Large sparse matrix from large scale structure
optimization:

𝐾𝑢 = 𝑓

• Setup phase
• Strength + aggregate + tentative + prolongation

• Galerkin product: 𝐴!"# = 𝑃!$𝐴!𝑃!
• Efficient sequential sparse matrix-matrix

multiplication algorithms
• Both space + computational efferent: fast and not

large temporary storage

Performance Metric && Baselines
• Performance Metric

• Timing: the speed of solving lager sparse linear system
• Scaling: difference number of degree freedom for the structure
• Compare with existing GPU-accelerated solver

• Baseline:
• Method based:

• C++, pure sequentially AMG (V-cycle) method
• GPU based:

• cuSolverSP: Sparse LAPACK
• GMRES Kokkos-based solver

• AMGX

Proposed Solution
• OpenMP
• Kokkos + Kokkos Kernels:

• Performance portability between GPUs and multicore CPUs.
• It builds on top of parallel programming frameworks (such as CUDA, and

OpenMP).
• Similar to BLAS
• Easy to implement
• SPARSE 1, 2, 3 Kernels

• Thrust: C++ standard template library for CUDA based on the (STL)
• Performance portability between GPUs and multicore CPUs.
• It builds on top of parallel programming frameworks (such as CUDA, and

OpenMP).
• Hard to implement
• + cuSPARSE

Proposed Solution
• Why Thrust

• Data containers:
• thrust::host_vector<T> stored in host memory
• thrust::device_vector<T> lives in GPU device memory
• thrust::universal_vector<T> both GPU and CPU can allocate
• iterator: begin, end
• the “=” operator can be used to copy data

• Thrust API
• thrust::transform
• thrust::for_each
• thrust::copy
• thrust::sort
• thrust::reduce
• thrust::sequence
• thrust::inner_product
• …

#include <thrust/copy.h>
#include <thrust/execution_policy.h>
...
struct is_even
{
__host__ __device__
bool operator()(const int x)
{
return (x % 2) == 0;
}
};

const int N = 6;
int V[N] = {-2, 0, -1, 0, 1, 2};
int result[4];
thrust::copy_if(thrust::host, V, V + N, result, is_even());
// V remains {-2, 0, -1, 0, 1, 2}
// result is now {-2, 0, 0, 2}

Datasets
• Data Store Format

• Coordinate Format (COO): higher space complex
• Block Compressed Sparse Row Format (BSR)

Reason For COO
• Easier to implement

via thrust::iterator

Reason For BRS: 𝑲𝒖 = 𝒇

Validation of the proposed solution
• GoogleTest

• GoogleTest is Google’s C++ testing and mocking
framework

• #include <gtest/gtest.h>

Test Bed

Intel(R) Core(TM) i9-10980XE CPU
18 Core 36 threads

NVIDIA GeForce RTX 3090
CUDA Version: 11.6

Results
• Novel and Challenge:

• BSR Format
• Kokkos + Kokkos Kernal
• Thrust

• Application:
• Large scale structure optimization problem: 𝐾𝑢 = 𝑓

• Experiments (6 in total):
• baseline using python: for checking the correctness
• baseline using C++ vis BSR: for baseline performance
• AMG + OpenMP + BSR
• AMG + Kokkos + Kokkos Kernels + BSR (CPU, GPU version)
• AMG + Thrust + cuSPARSE + COO (CPU, GPU version)

• Results:
• Time to solve plot: strong scaling
• Speed up plot vis baseline
• Percentage performance reach via: cuSolverSP, GMRES Solver (Kokkos-Kernal)
• Breakdown plot: computational cost for each function especially the Galerkin product

FLIP Fluid simulations
on CUDA
Sorakrit Chonwattanagul

About FLIP

u Reproducibility project

u Fluid-Implicit-Particle (1988)

u Uses particles in a grid to simulate fluids and interaction with solids over time

u Approximates the incompressible Navier-Stokes equations

u Advection equation

u Body forces equation, e.g. gravity

u Pressure equation (incompressibility)

u Can do liquids and gases

u Bubbles and spray (diffuse particles) in water

u Often used in conjunction with particle-in-cell method (PIC; alone may add
unintended viscosity/smoothness)

Existing implementations

u Industry standard for movie production, etc.

u Javascript example: https://matthias-
research.github.io/pages/tenMinutePhysics/18-flip.html

u Blender Mantaflow/Houdini OpenCL

Performance

u Time-to-solution

u How long it takes to bake a simulation of a certain quality (simulation length, sub
steps, grid resolution, number of particles)

u CPU: single-threaded, multi-threaded (OpenMP, threadpool)

u GPU: CUDA

u Compare solutions to single-threaded (sequential) simulation

Experiments

u Parameters

u Simulation length

u Sub steps

u Grid resolution

u Number of particles

u Testbed: most likely PACE output to VDB file

u Maybe real-time simulation rendered on OpenGL (then laptop)

u Plots

u Simulation time over quality parameters (above)

GPU-Accelerated Vortex
Particle Method (VPM)

Shreyas Ashok, Anand Radhakrishnan, Russell Newton

Introduction

● Vortex particle method (VPM) is a
Computational Fluid Dynamics (CFD)
technique used to solve the Euler or
Navier-Stokes fluid equations of motion.

● Lagrangian approach—track individual
particles of vorticity

○ In contrast with traditional Eulerian approach -
discretize domain into a grid

● We intend to reproduce this algorithm
and optimize it for HPC GPU computing

Vortex Particle Method used for
Multirotor Interaction Simulation

Alvarez, E. J., and Ning, A., “Development of a
Vortex Particle Code for the Modeling of Wake
Interaction in Distributed Propulsion,” AIAA

Applied Aerodynamics Conference, Atlanta, GA,
Jun. 2018. doi:10.2514/6.2018-3646

Performance Metrics

● Performance measure: simulation step time and algorithm scaling
○ Compare with varying particle counts

● Desired qualities of algorithm
○ Achieve good scaling on modern GPU hardware
○ Assess capability to conduct real-time simulations

■ Can we achieve real-time performance AND good results with lower-fidelity (e.g, smaller
number of total particles) simulations?

Plan for Solution

● Implement simple algorithm initially
○ At the beginning - keep it simple. Simplifying assumptions include

■ 2-dimensions only
■ Inviscid flow rather than viscous flow

● Use OpenACC to parallelize
● Validate and optimize solution

○ As project progresses, simplifying assumptions (2D and inviscid) could be relaxed depending on time
constraints; however, more time is to be devoted to optimization of HPC implementation.

● Pitfalls
○ Numerical stability: vortex particle methods can have stability problems when two particles get too

close together. To avoid this, many implementations “regrid” the particles onto a regularly-spaced
lattice at periodic intervals to maintain numerical stability.

○ Clustering: vortex particle methods can also have issues where many of the particles cluster together
in one region. The regridding should also help avoid this.

Baselines

● Compare scaling and performance to
existing implementations

○ VM2D
■ VM2D showed good scaling on

CPUs, but not as good scaling on
multiple GPUs

■ Figures on the right show scaling
performance

○ CVortex
■ Open source code written in Julia

● Assess performance for many different
problem sizes

○ Problem size is determined by number of
particles simulated

Validation

● Several canonical flows available for
validation

○ Compare our computed solution to the known
solution

● Canonical flows available
○ Flow over sphere
○ Flow over thin airfoil
○ Taylor-Green vortex (viscous only)

● Visualization
○ Rendering our results could be used for visual

comparisons

Output Data for Validation

● Data output from simulations will be velocity field
○ Compare velocity contours to canonical reference solutions

● Additional potential output datasets:
○ Drag and lift coefficients for a thin airfoil simulation

● Postprocessing using widely-available visualization software
○ Paraview
○ Tecplot

● Since this is a particle-based method, not as easy to generate output slices
over a grid

○ In order to do this, some interpolation will be required
○ To avoid excess interpolation, can combine dataset output with regridding procedure

mentioned before.

Testbeds

● Assess both single GPU capability and multi-GPU capability
● Single GPU: Run on local workstations/desktop computers
● Multi-GPU:

○ COC-ICE: Can parallelize over NVIDIA V100s
○ NVIDIA DGX A100 system available through Shreyas’ research lab

■ 8x NVIDIA A100, interconnected through NVLink high-bandwidth connection
■ NVLink will reduce communication times between GPUs, drastically improving

multi-GPU scaling

Potential Plots

log(# particles)

S
ec

on
ds

 p
er

tim

es
te

p

Single GPU Scaling Test

(example of result)

R
ea

l-T
im

e
C

ut
of

f

GPUS

S
pe

ed
up

Multi-GPU Strong Scaling Test

(example of result)

GPUs

S
ec

on
ds

 p
er

tim

es
te

p

Multi-GPU Weak Scaling Test

(example of result)Ideal

Ideal

References

Meldgaard, A., Darkner, S., & Erleben, K. (2022). Fast Vortex Particle Method for
Fluid-Character Interaction. Graphics Interface 2022. Retrieved from
https://openreview.net/forum?id=BrBlpeYNTMc

Marchevsky, I., Sokol, K., Ryatina, E., & Izmailova, Y. (2023). The VM2D Open Source
Code for Two-Dimensional Incompressible Flow Simulation by Using Fully
Lagrangian Vortex Particle Methods. Axioms, 12(3). doi:10.3390/axioms12030248

He, C., & Zhao, J. (2009). Modeling Rotor Wake Dynamics with Viscous Vortex Particle
Method. AIAA Journal, 47(4), 902–915. doi:10.2514/1.36466

Alvarez, E. J., and Ning, A. (2018). Development of a Vortex Particle Code for the
Modeling of Wake Interaction in Distributed Propulsion. AIAA Applied Aerodynamics
Conference, Atlanta, GA, Jun. 2018. doi:10.2514/6.2018-3646

