
CSE 6230 – HPC Tools and 
Applications

Ramakrishnan Kannan
Shruti Shivakumar



Day II 



Recap

• Terminologies
• Parallel Computing, HPC, Cluster Computing, Many/Multiple Cores, 

Embarassingly parallel, Pipelining
• Speedup, Work, Efficiency
• Amdahls Law

• Model, Challenges, Hope
• Scaling

• Weak and Strong Scaling



ARCHITECTURAL TAXONOMIES

• These classifications provide 
ways to think about problems 
and their solution.

• The classifications were originally 
in terms of hardware, but there 
are natural software analogues.

• Many systems blend approaches, 
and do not exactly correspond to 
the classifications.

SI : Single Instruction: All processors
execute the same instruction.

MI : Multiple Instruction: Different
processor may be executing
different instructions.

SD : Single Data: All processors are
operating on the same data.

MD: Multiple Data: Different processors
may be operating on different data.

Flynn’s Instruction/Data Taxonomy

Proposed by Michael Flynn (1966)

{

S

M

}

I

{

S

M

}

D

SI Single Instruction: All processors execute the same
instruction.

MI Multiple Instruction: Different processors may be
executing different instructions.

SD Single Data: All processors are operating on the same
data.

MD Multiple Data: Different processors may be operating
on different data.

Stout and Jablonowski – p. 35/237



SIMD & MIMD

Processors, with data

Instruction

Controller, with 
program

SIMD – Parallel for

GPU

MIMD



Shared Memory – A node or a computer

• Global memory space, accessible by all processors
• Processors may have local copies (in cache) of some 

global memory, consistency of copies usually 
maintained by hardware (cache coherency)

• Advantages:
• Global address space is user-friendly Data sharing between 

tasks is fast

• Disadvantages:
• Shared memory - to - CPU path may be a bottleneck (is 

bandwidth of the network sufficient?)
• Often: Non-Uniform Memory Access (NUMA)

• ⇒ access time varies, depends on physical distance
• Programmer responsible for correct synchronization

• Programming Models
• OpenMP, Cilk



Distributed Memory

• If processor A needs data in processor B, 
then B must send a message to A 
containing the data. Thus DM systems also 
known as message passing systems.

• Programming Models - MPI
• Advantages:

• Memory is scalable with number of processors
• Each processor has rapid access to its own 

memory
• Cost effective:can use commodity parts

• Disadvantages:
• Programmer is responsible for many of 

the details of the communication, easy 
to make mistakes.

• May be difficult to distribute the data 
structures



A General HPC Architecture

Shared Memory concept within a node
plus Distributed Memory concept: Non-local data can 
be sent across the network to other CPUs



HPC Architectures with Accelerators

Shared Memory within a node with CPUs and GPUs
plus Distributed Memory concept: Non-local data can 
be sent across the network to other CPUs



Communication Network
• There are many networks, but for the user differences are usually minor. Two main classes that do 

have some impact:

• Bus: Processors (and memory) connected to a common bus or busses, much like a local Ethernet.
• Not very scalable due to contention.



Memory Hierarchy
• von Neumann bottleneck : processor much faster than memory,

sits idle waiting for data. Unfortunately, faster memory higher
$/byte, physics imposes size constraints.

• To ameliorate latency, data moved between levels in blocks 
(cache lines, pages). For efficiency:

• use entire block while resident in the faster memory



Domain and Functional Decomposition

• Domain decomposition: Partition a (perhaps conceptual) space. 
Different processors do similar work on different pieces (quilting bee, 
teaching assistants for discussion sections, etc.)

• Functional decomposition: Different processors work on different 
types of tasks (workers on an assembly line, sub-contractors on a 
project, etc.)

• Functional decomposition rarely scales to many processors, so we’ll 
concentrate on domain decomposition.



Static Decompositions

• Often just evenly dividing space among the processors yields 
acceptable load balance, with acceptable performance if 
communication minimized.

• This approach works even if the objects have varying computational 
requirements, as long as there are enough objects so that the worst 
processor is likely to be close to the average (law of large numbers).

• Will be discussed in terms of distributed memory, but basic ideas also 
apply to shared memory.



Matrix Decompositions

• Suppose work at each position only depends on value there and 
nearby ones, equivalent work at each position.

• Dependencies force communication along boundary

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Minimize boundary (2D)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Minimize # neighbors (1D)

Minimizes 
Bandwidth

Minimizes 
Latency



Local vs Global Arrays

0 9 10 19 20 29

Serial Array

-1 0 9 10 0 9-1 10 0-1 9 10

Distributed Array

ghost
(if needed)

Processor 0 Processor 1 Processor 2



MPI Ranks -- Linear vs 2D Grid
MPI Rank vs. 2-D Indices

MPI ranks 0. . . 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

logical rows and

columns 0 . . . 3

For MPI_COMM_RANK = i and MPI_COMM_SIZE = p

my_row = !i/√p# and my_col = i−my_row ∗ √p

to send to logical send to MPI_COMM_RANK

Right (my_row, my_col +1) i + 1

Left (my_row, my_col -1) i − 1

Up (my_row -1, my_col) i − √p

Down (my_row +1, my_col) i +
√
p

MPI “virtual topologies” can do this for you.

Stout and Jablonowski – p. 95/237



Graph Decompositions

• Graph decomposition techniques can be used when dependencies 
are less regular. Once again, dependencies determine 
communication.

• Objects (calculations) represented as vertices (with weights if calculation 
requirements uneven)

• Communication represented as edges (with weights if communication 
requirements uneven).

• Goals:
• assign vertices to processors to evenly distribute the number/weight of 

vertices: balance computation
• minimize and balance the number/weight of edges between processors: 

minimize communication



Illustration of Graph Decomposition

5

1

1

3 3

1

1

2

2

2

1

2

2

1

1

1 1

1
1

5

1

1

1

1

3

1

1

2

2

3 2

1

2

2

1

1

1 1

Processors:
2

3

2

2

8

8

8

8

Numbers indicate work,
want to use 4 processors.



Geometric Decompositions

• When the objects have an underlying geometrical basis: finite 
elements in crash simulation, polygons representing census blocks in 
a geographical information system, stars in a galaxy, etc., the 
geometry can often be exploited

• if dependencies predominately involve nearby objects.
• Geometric decompositions can be based on recursive bisectioning, 

quad- or oct-trees, space-filling curves, etc., and can incorporate 
weights.

• Warning: geometric approaches not nearly as useful on high-
dimensional data.



Summary : Important Bottlenecks

Understand the serial 
portions of the code

Load Imbalance

Tame 
Communication

Engineering Challenges – Take more time to develop over serial code and debugging is hard



Administrivia

• TA office hours
• Tuesday 3:45pm to 4:45pm
• Zoom link

• Piazza
• PACE ICE (Instructional Cluster Environment)
• Github classroom

https://gatech.zoom.us/j/93445888623?pwd=NGQ3eWZFL3hxV2oxTVQ5N0dTdjQzZz09


PACE ICE

• Running assignments
• Login nodes : coding, running small scripts

• Please do not use the login nodes for any resource-intensive activities, as it 
prevents other students from using the cluster.

• Compute nodes : running assignments by submitting jobs to queue
• Batch or interactive jobs

• For more information
• https://pace.gatech.edu/pace-ice-instructional-cluster-environment-

education



Github classroom

• Check Canvas/Piazza for the link to the Assignment 0
• Modify the contents of README.md to the following 5 lines:

• First name
• Last name
• Preferred name
• Github username
• GT username

• Commit and push to your repo.
• Graded for 1 point. Due Jan 17, 5pm EST.


