
CSE 6230 – HPC Tools and 
Applications

Ramakrishnan Kannan
Shruti Shivakumar



Introduction
• Course Instructor – Ramakrishnan Kannan(rkannan3@gatech.edu)
• Teaching Assistant – Shruti Shivakumar (sshivakumar9@gatech.edu)
• Number of Registered Students – 60+
• Time and Venue

• Tuesdays and Thursdays from 5:00-6:15pm in Ford Environment Science and 
Technology Building, Room L1255.

• Mode
• Hybrid – All classes will be in-class and as well as over zoom
• Check the website schedule for in-class lectures

mailto:rkannan3@gatech.edu


Grading
• Three components

• 4 Programming assignments – 30%
• Shared memory – 5%
• Accelerated – 5%
• Distributed Memory – 10%
• Final Complexity and performance analysis – 10%

• Midterm – 10%
• Final Group Project – 60%

• Proposal – 15%
• Demonstration – 15%
• Report – 15%
• Final Presentation – 15%

• All deliverables and exams will be graded by TA. The project proposal and 
final presentation will be graded by both TA and Instructor



Prerequisites

• Programming experience – C/C++.
• Algorithm Analysis
• Preferred Courses

• HPC Architecture – Tom Conte or Rich Vuduc
• Algorithms – One of  CS 6550 / CSE6140 / CSE6220

• Time requirements
• Can vary based on student’s background and experience
• Programming and debugging experience
• Don’t wait till last minute for programming assignments and project



Previous 6230 Courses

• Professor Ümit V. Çatalyürek lectures
• Professor Chow’s lectures
• Professor Vuduc’s lectures



Office Hours

• Instructor Office hours and location
• Thursday 2-3pm EST
• Check Piazza for Zoom Link

• TA office hours and location
• Tuesday 3:45-4:45pm EST
• Check Piazza for Zoom Link



Announcement and Discussions

• Website - https://ramkikannan.com/teaching/
• Piazza - https://piazza.com/gatech/spring2023/cse6230
• Canvas/(Github classroom?) -



Late Policy and Due dates

• All assignments will be available on canvas after the class at 6pm on 
the announcement date. Check the website for details.
• All assignment are due before the class at 4:55pm on the deadline
• Two days extension can be provided if notified a day before the 

deadline to the TA for a 20% penalty. 
• No penalties for medical reasons or emergencies. 



Introduction to HPC
Motivated out of Rich Vuduc’s Lectures, SC’22 Parallel Computing 101 

Tutorial, https://hpc.llnl.gov/training/tutorials/



Introduction

• In this first half we introduce parallel computing and some useful 
terminology.
• We examine many of the variations in system architecture, and how 

they affect the programming options.
• We will look at a representative example of a large 

scientific/engineering code, and examine how it was parallelized. We 
also consider some additional examples.
• https://hpc.llnl.gov/training/tutorials/
• Jack Donggarra’s Turing Award Lecture

https://hpc.llnl.gov/training/tutorials/
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Motivation for Parallel Computing
• Natural fit: Real world is inherently parallel (weather, traffic jams, assembly 

lines, ant colonies, tutorials, ...).
• Parallel computers can be the only way to achieve specific computational 

goals
• ExaFLOPS (10^18 Floating Point Operations per Second) for complex problems
• Handling of exabytes of storage in data centers
• Mega-transactions per second for search engines, ATM networks, digital multimedia, 

social media
• Next Generation AI problems

• All computers are parallel -- cellphone, M1, AMD and Intel, and the 
parallelism is increasing
• Save time to solution and/or money – Accelerating scientific discoveries
• Solve larger or more complex problems (e.g. finer grids)
• CPU Scavenging Grid – Better Utilization of Idle Computers



Basic Terminologies

• Classical Problem - The definitions are fuzzy, many terms are not 
standardized, definitions often change over time.
• Many algorithms, software, and hardware systems do not match the 

categories, often blending approaches.



Basic Terminologies - II
• Parallel Computing- Solving a task by simultaneous use of multiple 

processors in a unified architecture.
• High Performance Computing- Solving large problems via supercomputers 

+ fast networks + massive storage.
• Embarrassingly Parallel - Solving many similar, but independent, tasks. E.g., 

parameter sweeps.
• Multi-core/Many-core Processors - Almost all processors today. Multiple 

compute cores on a single chip. They share memory, operating system and 
network.
• Cluster Computing - Combination of commodity units (e.g. multi-core 

processors) to build parallel system.
• Pipelining (streaming) - Breaking a task into steps performed by different 

units, much like an assembly line.



Pipelining – Automation Industry



Top500 -- Performance 

*As of 1/10/22
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Parallelism & power
Observe transition in ~ 2004.

Source: K. Yelick @ UCB – http://www.cs.berkeley.edu/~demmel/cs267_Spr11/
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Source: Marat Dukhan <mdukan3@gatech.edu>

mailto:mdukan3@gatech.edu


Crash Simulation

• A greatly simplified model, based on parallelizing crash simulation for 
Ford Motor Company. Simulations save significant money and time 
compared to testing real cars
• This example illustrates various aspects common to many simulations 

and other large-scale applications.



Finite Element Representation

• Car is modeled by a triangulated surface (elements).
• The simulation models the movement of the elements, incorporating 

the forces on them to determine their new position.
• In each time step, the movement of each element depends on its 

interaction with the other elements that it is physically adjacent to.
• In a crash, elements may end up touching that weren’t touching 

initially (not good!)
• The state of an element is its location, velocity, and information such 

as whether it is metal that is bending.



Car and Finite Element Representation



Serial Crash Simulation

• For all elements
• Read State(element), Properties(element), Neighbor_list(element)

• For time=1 to end_of_simulation
• For element = 1 to num_elements

• Compute State(element) for next time step, based on previous state of element
and its neighbors, and on properties of element



Simple Parallelization

• Parallel computer based on PC-like processors linked with a fast 
network, where processors communicate via messages. Distributed 
memory or message-passing .
• Distribute elements to processors, each processor updates the 

positions of the elements it contains: owner computes .
• All machines run the same program: SPMD , single program multiple 

data.
SPMD is the dominant form of parallel computing.



A Distributed Car



Parallel Crash Simulation

Concurrently for all processors P
• For all elements assigned to P

• Read State(element), Properties(element), Neighbor-list(element)

• For time=1 to end-of-simulation
• For element = 1 to num-elements-in-P

• Compute State(element) for next time step, based on previous state of element and its 
neighbors, and on properties of element



Distributing the car

• How is the car distributed across P?
• Typically element assignment determined by serial preprocessing using 

domain decomposition approaches described later.
• Need to keep the load balanced among the processors, otherwise some will 

be idle waiting for others



Connecting Pieces

• How does processor keep track of elements in other processors?
• Ghost cells - (halos) are copies of values computed elsewhere
• Need to minimize communication time



How good is a parallel computation?

• An important component of effective parallel computing is 
determining whether the program is performing well. If it isn’t, or 
can’t be scaled to the target number of processors, then one needs to 
determine the causes of the problem and develop better approaches.



Some definitions

• For a given problem A, let
• SerTime(n) = Time of best serial program to solve A 

for input of size n.
• ParTime(n,p) = Time of the parallel 

program+architecture to solve A for input of size n, 
using p processors.

• Note that SerTime(n) ≤ ParTime(n,1).
• Speedup(n,p): SerTime(n) / ParTime(n,p)
• Work(n,p): p · ParTime(n,p) ← cost
• Efficiency(n,p): SerTime(n) / [p · ParTime(n,p)]

0 < Speedup ≤ p

Serial Work ≤ Parallel Work < ∞

0 < Efficiency ≤ 1
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Very rare. Some reasons for speedup > p 
(efficiency > 1)

• Parallel computer has p times as much 
RAM so higher fraction of program 
memory in RAM instead of disk. .An 
important reason for using parallel 
computers

• In developing parallel program a better 
approach was discovered, older serial 
program was not best possible.

• A useful side-effect of parallelization



Amdahl’s Law

• Amdahl [1967]: Let f be fraction of 
time spent on operations that are 
performed serially. Then for

• ParTime(p) ≥ SerTime(p) · ! + !"#
$

• Speedup(p) ! !
" # !"#

$
• Which implies

Speedup !1/f



Amdahls Law - II
• Parallelization usually adds communication 

– which Amdahls doesn’t consider
• For Crash: ghost cells sent every time step 

and periodic global communication to 
check if parts are colliding.
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• Hope
• Algorithm: New algorithms 

with much smaller values of 
f .

• Necessity is the mother of 
invention.

• Memory hierarchy: More 
time spent in RAM than disk.

• Scaling: Usually time spent in 
serial portion of code is a 
decreasing fraction of the 
total time as problem size 
increases.



Program Structure

Often serial part grows with n much slower than total time.

Serial, time grows slowly with n

Parallelizable loop, grows with n 

Serial, fixed time

Parallelizable loop within loop, 
time grows very rapidly with n

Serial, time grows slowly with n

Common Program Structure

Often serial part grows with n much slower than total time.

Serial, time grows slowly with n

Serial, time grows slowly with n

Parallelizable loop, grows with n

Parallelizable loop within loop,
time grows very rapidly with n

Serial, fixed time

I.e., as n ↗ Amdahl’s “f” ↘

Stout and Jablonowski – p. 31/237



Scaling
• Utilize large computers by increasing n as p increases
• Fix the amount of data per processor: weak scaling 

• Efficiency can remain high if communication does not 
increase excessively

• Warning: efficiency improves, but parallel time will 
increase if SerTime(n) superlinear (ω(n)).

• Amdahl considered strong scaling : n is fixed
• Linear speedup is difficult 

• Nothing scales to arbitrarily many processors.
• However, for most users, the important question is:

• Have I achieved acceptable performance on my 
software/hardware system for a suitable range of data and 
system sizes?

Weak Scaling

Strong Scaling


