Parallel Graph Algorithms

Aydin Bulug

ABuluc@lbl.gov
http://gauss.cs.ucsb.edu/~aydin/

Lawrence Berkeley National Laboratory

CS267, Spring 2016
March 17, 2016

Slide acknowledgments: A. Azad, S. Beamer, J. Gilbert, K. Madduri

Graph Preliminaries

G = (V:E)
vertices

edges
// \\;grtex
Edge

n=|V| (number of vertices)

m=|E| (number of edges)

D=diameter (max #hops between any pair of vertices)

¢ Edges can be directed or undirected, weighted or not.
¢ They can even have attributes (i.e. semantic graphs)

* Sequences of edges <u,,u,>, <U,,U;>, ... ,<uU, U >isa
path from u; to u,.. Its length is the sum of its weights.

Lecture Outline

¢ Applications
¢ Designing parallel graph algorithms

e Case studies:

A.
. Shortest Paths: Delta-stepping, Floyd-Warshall

moo®

Graph traversals: Breadth-first search

Maximal Independent Sets: Luby’s algorithm

. Strongly Connected Components

Maximum Cardinality Matching

Lecture Outline

¢ Applications

3/17/16

Routing in transportation networks

Driving Directions
To: Washington, D.G.

[} Berkolon.ca
[P eator arag e rute - save s ocaton

 A.5:2800.3 milos, 40 hr 10 min % A0a1o cute

+ Oepatthtivi st

ftonto Unversity Ave. 18 mies

3 Takeramp rightfor OO Viest /1580 13 miles
st Enstshore Fuy ouard
Richmond Sacramento

4+ Kosplanto stay on 180 East! oe3mies
Eastshore Fuy

& stop torton boom

5 Toke ramp rightfor 90 Eastiowara 6518 mies
Airport/ Reno

© Eneng ieada
& Entonng Uan

20mies

5350 miles

Road networks, Point-to-point shortest paths: 15 seconds (naive) - 10 microseconds

3 H. Bast et al., “Fast Routing in Road Networks with Transit Nodes”, Science 27, 2007. !

Internet and the WWW

e The world-wide web can be represented as a directed graph
— Web search and crawl: traversal
— Link analysis, ranking: Page rank and HITS
— Document classification and clustering
¢ Internet topologies (router networks) are naturally modeled
as graphs

smenegyscan o

chdenton.org STELIN

s fushngt Blogepol thedooiman net

Large Graphs in Scientific Computing

12 345 12 345
1o ° 1 1 sleo @

2 XX 2 2 5/ @ °
3 e o 5 3 3 e o
se ® 1|e °
5l @ ° 4 4 2)

5 5
A PA

Matching in bipartite graphs: Permuting to heavy diagonal or block triangular form

Graph partitioning: Dynamic
load balancing in parallel
¢ simulations

— Picture (left) credit: Sanders and Schulz

Problem size: as big as the sparse
linear system to be solved or the
simulation to be performed

Large-scale data analysis

e Graph abstractions are very useful to analyze complex data sets.

e Sources of data: simulations, experimental devices, the Internet,
sensor networks

e Challenges: data size, heterogeneity, uncertainty, data quality

Astrophysics: massive datasets, Bioinformatics: data quality, ~ Social Informatics: new analytics
temporal variations heterogeneity

challenges, data uncertainty

Image sources: (1) nmt. tarfield.jpg (2,3)

3/17/16

Manifold Learning

Isomap (Nonlinear dimensionality reduction): Preserves the

intrinsic geometry of the data by using the geodesic distances

on manifold between all pairs of points

Tools used or desired: -

K-nearest neighbors
All pairs shortest paths (APSP)
Top-k eigenvalues

c

Tenenbaum, Joshua B., Vin De Silva, and John C. Langford. "A global geometric framework for
nonlinear dimensionality reduction." Science 290.5500 (2000): 2319-2323.

Large Graphs in Biology

Graph Theoretical
analysis of Brain
Connectivity

Whole genome assembly

A Read Layout B Overlap Graph

Vertices: reads

C de Bruijn Graph TG

Vertices: k-mers UL
_GTT
GAC ACC* CCT, (ary TAC ACA CAA * AAG AG'\
Terel
26 billion (8B of which are non-erroneous) -
unique k-mers (vertices) in the hexaploit

wheat genome W7984 for k=51

Schatz et al. (2010) Perspective: Assembly of Large Genomes
w/2nd-Gen Seq. Genome Res. (figure reference)

Potentially millions of
neurons and billions of edges
with developing technologies

Lecture Outline

¢ Designing parallel graph algorithms

The PRAM model

e Many PRAM graph algorithms in 1980s.
¢ |dealized parallel shared memory system model

¢ Unbounded number of synchronous processors;
no synchronization, communication cost; no

parallel overhead

e EREW (Exclusive Read Exclusive Write), CREW
(Concurrent Read Exclusive Write)

¢ Measuring performance: space and time
complexity; total number of operations (work)

3/17/16

PRAM Pros and Cons

¢ Pros
— Simple and clean semantics.

— The majority of theoretical parallel algorithms are designed
using the PRAM model.

— Independent of the communication network topology.
e Cons

— Not realistic, too powerful communication model.

— Communication costs are ignored.

— Synchronized processors.

— No local memory.

Big-O notation is often misleading.

Graph representations

Compressed sparse rows (CSR) = cache-efficient adjacency lists

Index into
adjacency l 1 [3 [3 [4 [6 ‘ (row pointers in CSR)
array l \ \
Adjacencies | 1 3 2 2 (column ids in CSR)
Weights |12 |26 |19 |14 |7 (numerical values in CSR)

Distributed graph representations

¢ Each processor stores the entire graph
(“full replication”)

e Each processor stores n/p vertices and all adjacencies
out of these vertices (“1D partitioning”)

“w, n

¢ How to create these “p” vertex partitions?
— Graph partitioning algorithms: recursively optimize for
conductance (edge cut/size of smaller partition)

— Randomly shuffling the vertex identifiers ensures that edge
count/processor are roughly the same

2D checkerboard distribution

¢ Consider a logical 2D processor grid (p, * p. = p) and
the matrix representation of the graph

¢ Assign each processor a sub-matrix (i.e, the edges
within the sub-matrix)

9 vertices, 9 processors, 3x3 processor grid

X X X

Flatten
Sparse matrices

Per-processor local graph
representation X [X

3/17/16

Lecture Outline

¢ Case studies:
A. Graph traversals: Breadth-first search

Graph traversal: Depth-first search (DFS)

preorder
vertex number

source
vertex
procedure DFS(vertex v)

v.visited = true

previsit(v)

forall v st. (v,w)EE
if('w.visited) DFS(w)

postvisit(v)

Parallelizing DFS is a bad idea: span(DFS) = O(n)
! J.H. Reif, Depth-first search is inherently sequential. Inform. Process. Lett. 20 (1985) 229-234.

Graph traversal : Breadth-first search (BFS)

Onppoit: distance from
source vertex
/7

source
vertex

Memory requirements (# of machine words):
« Sparse graph representation: m+n

« Stack of visited vertices: n

« Distance array: n

Breadth-first search is a very important building block for other
parallel graph algorithms such as (bipartite) matching, maximum
flow, (strongly) connected components, betweenness centrality, etc.

Parallel BFS Strategies

1. Expand current frontier (level-synchronous approach, suited for low diameter graphs)
N) 0

““ » O(D) parallel steps

in current frontier are
visited in parallel

+ Adjacencies of all vertices

source
vertex

2. Stitch multiple concurrent traversals (Ullman-Yannakakis approach,
suited for high-diameter graphs)

5

0 « path-limited searches
from “super vertices”

« APSP between “super

source ﬁ)_ L vertices”
vertex 0 U 4 . g

3/17/16

Breadth-first search
using matrix algebra

from
°
e oo
o |e)
° °
° °
7 e o
AT

Replace scalar operations
Multiply -> select
Add -> minimum

Select vertex with
minimum label as parent

S
o

from
3 6 1] :]]
°)
@ o0 ()
@ o |e e o K
o ")))
parents: @ o [
) 7 2 @ L | hed
AT X A™X
)

from
° (@]]
@
°)
@ to ° K ®
°
parents: @ ° °
7 () L | L |
AT X ATX
1
4
from
3 1 e[1 [|]
[] @ | 3)
? to = >
() < |19
parents: @ ° 5 @
D) 7 ° 0
® AT X ATX
)

3/17/16

IS
]

; from
3 6 1 o | |]]
°
o (=|e®
to |e ° 2
° °
o o ®
7| e e || ||
AT X ATX

1D Parallel BFS algorithm

[] (]
e o
[e 0
° ° o X
[] L []
[] L
[J [
AT frontier
ALGORITHM:

1. Find owners of the current frontier’s adjacency [computation]
2. Exchange adjacencies via all-to-all. [communication]
3. Update distances/parents for unvisited vertices. [computation]

2D Parallel BFS algorithm

[] []
[BN]
[I) [BN}
° ° o X
[] [] []
[] [I)
[] []
AT frontier
ALGORITHM:

1. Gather vertices in processor column [communication]

2. Find owners of the current frontier’s adjacency [computation]
3. Exchange adjacencies in processor row [communication]

4. Update distances/parents for unvisited vertices. [computation]

Percentage of total

Performance observations of the level-synchronous algorithm

Youtube social network Types Synthetic network
9

60 7 —e— # of vertices in frontier array 3,018
—v— Execution time Claimed Child

Failed Child
20 Peer
— Valid Parent

Neighbors
-
&

3
123456 7 8 9101112131415 Step
Phase #

When the frontier is
at its peak, almost all
edge examinations
“fail” to claim a child

3/17/16

Bottom-up BFS algorithm

Classical (top-down) algorithm is optimal in worst case, but
pessimistic for low-diameter graphs (previous slide).

Top-Down Bottom-Up

OO

b

Direction Optimization:
- Switch from top-down to
bottom-up search
- When the majority of the
vertices are discovered.
[Read paper for exact heuristic]

for all vin frontier for all vin unvisited
attempt to parent all find any parent
neighbors(v) (neighbor(v) in frontier)

! Scott Beamer, Krste Asanovié, and David Patterson, "Direction-Optimizing Breadth-First Search”,]
i Int. Conf. on High Performance Computing, Networking, Storage and Analysis (SC), 2012 |

Direction optimizing BFS with 2D decomposition

* Adoption of the 2D algorithm created the first quantum leap
* The second quantum leap comes from the bottom-up search

- Can we just do bottom-up on 1D?

- Yes, if you have in-network fast frontier membership queries
* IBM by-passed MPI to achieve this [Checconi & Petrini, IPDPS'14]
» Unrealistic and counter-productive in general

* 2D partitioning reduces the required frontier segment by a
factor of p_ (typically Vp), without fast in-network reductions

* Challenge: Inner loop is serialized

Direction optimizing BFS with 2D decomposition

Solution: Temporally
partition the work

» Temporal Division - a
vertex is processed
by at most one
processor at a time

» Systolic Rotation -
send completion
information to next

processor so it knows
what to skip

Direction optimizing BFS with 2D decomposition

Solution: Temporally
partition the work

» Temporal Division - a
vertex is processed
by at most one
processor at a time

» Systolic Rotation -
send completion
information to next
processor so it knows
what to skip

3/17/16

Direction optimizing BFS with 2D decomposition

200 T T T

& @—@ Direction-optimizing
& 150H @—@ Top-down 4
o
£ 100]
4
<
[&
© 50f 1
®
o 19
oS Q 4 X ‘
30 31 32 33 34
(2,916) (5,776) (11,664) (23,104) (46,656)
Scale

R-MAT on Jaguar (Processors)

¢ ORNL Titan (Cray XK6, Gemini interconnect AMD Interlagos)
e Kronecker (Graph500): 16 billion vertices and 256 billion edges.

3 Scott Beamer, Aydin Bulug, Krste Asanovi¢, and David Patterson, "Distributed Memory Breadth-First Search
| Revisited: Enabling Bottom-Up Search”, IPDPSW, 2013

Parallel De Bruijn Graph Traversal

Goal:

e Traverse the de Bruijn graph and find UU contigs (chains of UU
nodes), or alternatively

* find the connected components which consist of the UU contigs.

. Contig 2: AACCG
Contig 1: GATCTGA

. . Contig 3: AATGC
* Mainidea:
— Pick a seed

— lteratively extend it by consecutive lookups in the distributed hash
table (vertex = k-mer = key, edge = extension = value)

Parallel De Bruijn Graph Traversal

Assume one of the UU contigs to be assembled is:

CGTATTGCCAATGCAACGTATCATGGCCAATCCGAT

Parallel De Bruijn Graph Traversal

Processor P; picks a random k-mer from the distributed hash table as seed:

GEARCGTAT |

P, knows that forward extension is A

P, uses the last k-1 bases and the forward extension and forms: CAACGTATCA
P, does a lookup in the distributed hash table for CAACGTATCA

P, iterates this process until it reaches the “right” endpoint of the UU contig

P, also iterates this process backwards until it reaches the “left” endpoint of the
UU contig

3/17/16

Multiple processors on the same UU contig

P. 1 P \/‘ Pt

' L o AL
[CGTATTGCCAS ~~ <CGTATCA. ZAATCCGAT|
N AN

‘\/\‘

/

However, processors P, P, and P, might have picked initial seeds from
the same UU contig

* Processors P, P;and P, have to collaborate and concatenate subcontigs
in order to avoid redundant work.

* Solution: lightweight synchronization scheme based on a state machine

Number of vertices in fringe

Moral: One traversal algorithm does not fit all graphs

300000

250000

200000

150000

100000

50000

BFS tree level

Low diameter graph (R-MAT)
Vs.
Long skinny graph (genomics)

Genetic linkage map, courtesy Yan et al.

Lecture Outline

B. Shortest Paths: Delta-stepping, Floyd-Warshall

Parallel Single-source Shortest Paths
(SSSP) algorithms

e Famous serial algorithms:
— Bellman-Ford : label correcting - works on any graph
— Dijkstra : label setting — requires nonnegative edge weights
* No known PRAM algorithm that runs in sub-linear time and
O(m+n log n) work
¢ Ullman-Yannakakis randomized approach
e Meyer and Sanders, A - stepping algorithm

3 U. Meyer and P.Sanders, A - stepping: a parallelizable shortest path algorithm.
i Journal of Algorithms 49 (2003)

e Chakaravarthy et al., clever combination of A - stepping and
direction optimization (BFS) on supercomputer-scale graphs.

i V. T. Chakaravarthy, F. Checconi, F. Petrini, Y. Sabharwal
i “Scalable Single Source Shortest Path Algorithms for Massively Parallel Systems ”, IPDPS’14

3/17/16

10

A - stepping algorithm

e Label-correcting algorithm: Can relax edges from

unsettled vertices also

e “approximate bucket implementation of Dijkstra”

e For random edge weighs [0,1], runsin O(n+m+D-L)

where L = max distance from source to any node

¢ Vertices are ordered using buckets of width A

¢ Each bucket may be processed in parallel

¢ Basic operation: Relax (e(u,v))
d(v) = min {d(v), d(u) + w(u, v) }

A < min w(e) : Degenerates into Dijkstra

A > max w(e) : Degenerates into Bellman-Ford

A - stepping algorithm: illustration

Buckets

r
1
1

One parallel phase

i while (bucket is non-empty)

Relax heavy request pairs (from S)

i) Inspect light (w < A) edges

i) Construct a set of
“requests” (R)
iii) Clear the current bucket

iv) Remember deleted vertices

(S)

v) Relax request pairs in R

' Go on to the next bucket

A - stepping algorithm: illustration

d array
01 2 3 4 5 6

Lo]ee]eo]e0 o]0 |

Buckets
oo [T T[1]

e
1
1

One parallel phase E
i while (bucket is non-empty) !
i) Inspect light (w < A) edges |
ii) Construct a set of E
“requests” (R) !

iii) Clear the current bucket H
iv) Remember deleted vertices i
) :

v) Relax request pairs in R !
elax heavy request pairs (from S) |
o0 on to the next bucket i

@ D

Unitialization:
!Insert s into bucket, d(s) =0

d array
01 2 3 4 5 6

Lo]ee]eo]eo o]0 |

Buckets
oo [T T[1]

1 One parallel phase
i while (bucket is non-empty)

()P

[0}

i) Inspect light (w < A) edges

ii) Construct a set of
“requests” (R)
iii) Clear the current bucket

iv) Remember deleted vertices

(S)
v) Relax request pairs in R

elax heavy request pairs (from S)

on to the next bucket

3/17/16

11

A - stepping algorithm: illustration

r
1
1

One parallel phase
while (bucket is non-empty)
i) Inspect light (w < A) edges
i) Construct a set of
“requests” (R)
iii) Clear the current bucket
iv) Remember deleted vertices
(S)
v) Relax request pairs in R
Relax heavy request pairs (from S)
Go on to the next bucket

R [2
sl [T [[]

A - stepping algorithm: illustration

r
1
1

One parallel phase
while (bucket is non-empty)
i) Inspect light (w < A) edges
i) Construct a set of
“requests” (R)
iii) Clear the current bucket
iv) Remember deleted vertices
(S)
v) Relax request pairs in R
Relax heavy request pairs (from S)
Go on to the next bucket

A - stepping algorithm: illustration

d array
01 2 3 4 5 6

Lo o]0t]o0]0]co]

Buckets
o2 T [[1]]

r
1
1

@ D

One parallel phase
while (bucket is non-empty)
i) Inspect light (w < A) edges
i) Construct a set of
“requests” (R)
iii) Clear the current bucket
iv) Remember deleted vertices
(S)
v) Relax request pairs in R
elax heavy request pairs (from S)
o on to the next bucket

A - stepping algorithm: illustration

d array
01 2 3 4 5 6

Lo]wlot|oo]o0]0]co]

Buckets
ol [T T TTT]

r
1
1

@ D

One parallel phase
while (bucket is non-empty)
i) Inspect light (w < A) edges
i) Construct a set of
“requests” (R)
ii) Clear the current bucket
iv) Remember deleted vertices
(S)
v) Relax request pairs in R
elax heavy request pairs (from S)
o on to the next bucket

3/17/16

12

3/17/16

A - stepping algorithm: illustration A - stepping algorithm: illustration

| ittt | ittt
1 1
1 1

One parallel phase One parallel phase
i while (bucket is non-empty)
i) Inspect light (w < A) edges
i) Construct a set of
“requests” (R)

E i while (bucket is non-empty)
iii) Clear the current bucket i

i) Inspect light (w < A) edges |
ii) Construct a set of E

“requests” (R) !
iii) Clear the current bucket :

iv) Remember deleted vertices iv) Remember deleted vertices

(S) (S)

d array v) Relax request pairs in R v) Relax request pairs in R

01 2 3 4 5 6 1 Relax heavy request pairs (from S) 1 Relax heavy request pairs (from S)

[0 [03]01].08]c0[e0]oo] 1 Go on to the next bucket ' ! Go on to the next bucket .
Buckets R R
olala[[[[]]
slolof [[[]] s lof2[1[3] []
No. of phases (machine-independent performance count) Average shortest path weight for various graph families
~ 220yertices, 222 edges, directed graph, edge weights normalized to [0,1]
10000 Complexity:
100000
high On+m+D-L)

100000 -

diamete 10000 L: maximum distance
|
& 1000 | (shortest path length)
10000 -
100
1000 -
diameter
100 4 4
5
h e v L]

Rnd-md Rnd-logU Scale-free LGrid-md LGrid-ogU SqGrid USAJNE USAtNE

No. of phases

Average shortest path weight

Graph Family Rnd-md Rnd-logU Scale-free LGrid-md LGrid-logU SqGrid USAd NE USAtNE

Graph Famil
Too many phases in high diameter graphs: P !

Level-synchronous breadth-first search has the same problem.

13

All-pairs shortest-paths problem

¢ Input: Directed graph with “costs” on edges
¢ Find least-cost paths between all reachable vertex pairs
e Classical algorithm: Floyd-Warshall

oo 000
for k=1:n // the induction sequence o0 000
fori=1:n e 000 o0
forj=1:n °
W) +w(k—)) < w(i—j) e e
w(i—j):= w(i—k) + w(k—y)
k =1 case

e |t turns out a previously overlooked recursive version is
more parallelizable than the triple nested loop

‘ + is “min”, x is “add” ‘

The cost of
3-1-2 path
a(3,2) = a(3,1)+a(1,2)——T11(3,2) = TI(1,2)
0|5 9| o o 4 1|1 11 1 1
o |0 1|-2 o o 212 212 2 2
318 0|4 o 3 M= 311 3|13 3 3
© o 5|0 4 o 4 4 4[4 4 4
© ® —1| o 0 o« 55 5|55 5
-3 oo | o 7 0 6 6 6/6 6 6
Distances Parents

0[5 6| o o 4
|0 1|-2 o o
318 0| 4 o 3
w o 5|0 4 o
w o —]| o 0 o
-3 oo | o 7 0
Distances

A = A¥%; % recursive call
ols ol ® o 4 B = AB; C =CA;
© |0 1122 o o D=D+CB;
3| 0| 4 o 3 D = D*; % recursive call
© o 5|0 4 o B = BD; C = DC;
© @ -lf o 0 A = A + BC;
-3 © | o 7 0
D = D*: no change
0 1
5 —
ERIFHEER
B D Path:

1-2-3

a(1,3) = a(1,2) +a(2,3)——T1(1,3) = T1(2,3)

11 2|1 1 1
212 2(2 2 2
n-l3l1 3)3 33
4 4 44 4 4
555|555
6 6 6/6 6 6
Parents

3/17/16

14

All-pairs shortest-paths problem

Time (in miliseconds)

----- Iterative on CPU

——— Iterative on GPU

o| | = Recursive on GPU

~—— Optimized Recursive on GPU

9 95 10 105

Log(dimension)

Floyd-Warshall
ported to GPU

Naive

€~ recursive

implementation
The right
primitive
(Matrix multiply)

LA Bulug, J. R. Gilbert, and C. Budak. Solving path problems on the GPU. Parallel !

| Computing, 36(5-6):241 -

253, 2010.

Communication-avoiding APSP in distributed memory

Blocked step

Cyclic step
[LAl
lﬂ I_FV P P
P12 P13 P14
I
n P21 Pzz P23 P24 n/2
P31 P32 P33 P34
]]

>
2
N

Par| Pa2| Pas| Paa

Bandwidth: Wy, s (1, p) = 0/ Jep)

Latency: S, (p)= 0(\/5 log*(p))

v
P P
n/a
Pz P23

n/4

c: number of
replicas

Optimal for any
memory size !

Communication-avoiding APSP in distributed memory

1200

1000

800

600

GFlops

400

200

0

O <t O < — < © <t O
— O A — O
N O N

Number of compute nodes

1024

3 E. Solomonik, A. Bulug, and J. Demmel. Minimizing communication in all-pairs
! shortest paths. In Proceedings of the IPDPS. 2013.

Lecture Outline

C. Maximal Independent Sets: Luby’s algorithm

3/17/16

15

Maximal Independent Set

¢ Graph with vertices V ={1,2,...,n}

« Aset S of vertices is independent if no 1
two vertices in S are neighbors.

« Anindependent set S is maximal if it is
impossible to add another vertex and
stay independent

* Anindependent set S is maximum
if no other independent set has more
vertices

» Finding a maximum independent set is

The set of red vertices
intractably difficult (NP-hard)

S = {4, 5} is independent
« Finding a maximal independent set is and is maximal
easy, at least on one processor. but not maximum

Sequential Maximal Independent Set Algorithm

S = empty set;
for vertexv=1ton{
if (v has no neighbor in S) {
addvtoS

o g h w2

Sequential Maximal Independent Set Algorithm

S = empty set;
for vertexv=1ton {
if (v has no neighbor in S) {
addvtoS

o g~ wd =

Sequential Maximal Independent Set Algorithm

S = empty set;
for vertexv=1ton {
if (v has no neighbor in S) {
addvtoS

I T o

3/17/16

16

Sequential Maximal Independent Set Algorithm

1. S =empty set;

2. for vertexv=1ton{

3 if (v has no neighbor in S) {
4. addvtoS
5

6

}

work ~ O(n), but span ~O(n) ‘

Parallel, Randomized MIS Algorithm

S =empty set; C =V,

while C is not empty {
label each v in C with a random r(v);

for all v in C in parallel { 5 .

move v from C to S;

remove neighbors of v from C;

s={}
€={1,23,4,56,7,8}

1
2
3
4
5. if r(v) < min(r(neighbors of v)) {
6
7
8
9
1

0. } 3 M. Luby. "A Simple Parallel Algorithm for the Maximal Independent Set 3
i Problem". SIAM Journal on Computing 15 (4): 10361053, 1986 |

Parallel, Randomized MIS Algorithm

S =empty set; C =V,
while C is not empty {

label each v in C with a random r(v);

move v from C to S;

remove neighbors of v from C;

) S={}
C={1,2,3,4,56,7,8}

1
2

3

4. for all v in C in parallel { 5 . ‘ b‘ 6
5. if r(v) < min(r(neighbors of v)) {

6

7

8

9

1

Parallel, Randomized MIS Algorithm

2.6 4.1
1. S=emptyset; C=V,
2. while C is not empty {
3 label each v in C with a random r(v); 58
4 for all vin C in parallel { 5() (e
5. if r(v) < min(r(neighbors of v)) {
6 move v from C to S; 9.7 9.3
7 remove neighbors of v from C;
8 } S={}
9 } C={1,2,3,4,56,7,8}
10. }

3/17/16

17

Parallel, Randomized MIS Algorithm

2.6 4.1
1. S=emptyset; C=V,
2. while C is not empty {
3. label each v in C with a random r(v); 58
4. for all v in C in parallel { 5 . ‘ 6
5. if r(v) < min(r(neighbors of v)) {
6. move v from C to S; 9.7 9.3
7. remove neighbors of v from C;
8. } S$={1,5}
9 } c={6,8}
10. }

Parallel, Randomized MIS Algorithm

1. S=emptyset; C=V,

2. while C is not empty {

3 label each v in C with a random r(v); 7
4 for all v in C in parallel { 5 . ‘ 6
5. if r(v) < min(r(neighbors of v)) {

6 move v from C to S; 1.8

7 remove neighbors of v from C;

8 } S$={1,5}

9 } c={6,8}

10. }

Parallel, Randomized MIS Algorithm

1. S=emptyset; C=V,

2. while C is not empty {

3 label each v in C with a random r(v); 7
4 for all vin C in parallel { 5() o
5. if r(v) < min(r(neighbors of v)) {

6 move v from C to S; 1.8

7 remove neighbors of v from C;

8 } $={1,528}

o) c={}

10. }

Parallel, Randomized MIS Algorithm

S =empty set; C =V,
while C is not empty {

label each v in C with a random r(v);

move v from C to S;

remove neighbors of v from C;

Theorem: This algorithm
“very probably” finishes
} within O(log n) rounds.

1
2

3

4. for all v in C in parallel { 5 . k b. 6
5. if r(v) < min(r(neighbors of v)) {

6

7

8

9

1

‘ work ~ O(n log n), but span ~O(log n) ‘

3/17/16

18

Lecture Outline

D. Strongly Connected Components

Strongly connected components (SCC)

1 2 4 7 5 3 6
1le @ @
2 [] L BN J
4|l@ [] []
7 o 0 0o 0
5 [] °
3 [N J
6 [K J

* Symmetric permutation to block triangular form

* Find P in linear time by depth-first search

: Tarjan, R. E. (1972), "Depth-first search and linear graph algorithms",
i SIAM Journal on Computing 1 (2): 146-160

Strongly connected components of directed graph

» Sequential: use depth-first search (Tarjan);
work=0(m+n) for m=|E|, n=|V]|.

* DFS seems to be inherently sequential.

 Parallel: divide-and-conquer and BFS (Fleischer
et al.); worst-case span O(n) but good in practice
on many graphs.

! L. Fleischer, B. Hendrickson, and A. Pinar. On identifying strongly connected components in
i parallel. Parallel and Distributed Processing, pages 505-511, 2000.

- Partition the given graph into

- Each can be processed

Fleischer/Hendrickson/Pinar algorithm

three disjoint subgraphs

independently/recursively

Lemma: FW(v)N BW(v) is a
unique SCC for any v. For every
other SCC s, either

(a) s € FW(V\BW(v),

(b) s © BW(V)\FW(v),
(©) s C V\ (FW(v) UBW(v)). %

FW(v): vertices reachable from vertex v.
BW(v): vertices from which v is reachable. ¢=¢ oWt

3/17/16

19

Improving FW/BW with parallel BFS

Observation: Real world graphs have giant SCCs

- QOO\OBWQ Finding FW(pivot) and BW(pivot) can

A dominate the running time with
PN span=0O(N
Qi e vy ot
O o
‘Qb Solution: Use parallel BFS to limit

£ see i
Qg\% span to diameter(SCC)

- 7
- Remaining SCCs are very small; increasing span of the recursion.
+ Find weakly-connected components and process them in parallel

3

i's. Hong, N.C. Rodia, and K. Olukotun. On Fast Parallel Detection of Strongly Connected
i Components (SCC) in Small-World Graphs. Proc. Supercomputing, 2013

Lecture Outline

E. Maximum Cardinality Matching

Bipartite Graph Matching

e Matching: A subset M of edges with no
common end vertices.

— |M| = Cardinality of the matching M

O Matched vertex wmmm Matched edge

O Unmatched vertex —— Unmatched edge
Az O
® ® & ®
®) ® ®

A Matching (Maximal cardinality) Maximum Cardinality Matching

Single-Source Algorithm for Maximum
Cardinality Matching

Augmenﬁng?

®) path ™ ()
®)))
® ® © ®)

1. Initial matching 2. Search for augmenting 3. Increase matching by
path from x,. stop when flipping edges in the

an unmatched vertex found augmenting path

Repeat the process for other unmatched vertices

3/17/16

20

Multi-Source Algorithm for Maximum
Cardinality Matching

Search Forest

Augmenting ¢~

0 0 paths @ @

1. Initial matching 2. SearchAfor vertex-disjoint 3: InFrease maFching by
augmenting paths from x; & x;. flipping edges in the
Grow a tree until an unmatched augmenting paths

vertex is found in it

Repeat the process for until no augmenting path is found

Limitation of Current Multi-source Algorithms

Previous algorithms destroy both trees
and start searching from x, again

®)
~
~
~o 0
® & 9
& ®
-
O @ Frontier
®» ®
OO
(a) A maximal matching @
in a Bipartite Graph (b) Alternating BFS Forest (c) Start BFS from x,

Augment in forest

Tree Grafting Mechanism

Active Tree Renewable Tree Active Tree Active Tree
O
Unvisited
Vertices @ @
(a) A maximal matching @
in a Bipartite Graph (b) Alternating BFS Forest (c) Tree Grafting (d) Continue BFS

Augment in forest

3 Ariful Azad, Aydin Bulug, and Alex Pothen. A parallel tree grafting algorithm for maximum cardinality
3 matching in bipartite graphs. In Proceedings of the IPDPS, 2015

Parallel Tree Grafting

1. Parallel direction optimized BFS (Beamer et al. SC 2012)
— Use bottom-up BFS when the frontier is large

Maintain visited array

To maintain vertex-disjoint
paths, a vertex is visited
only once in an iteration.

Thread-safe atomics

2. Since the augmenting paths are vertex disjoint we can
augment them in parallel

3. Each renewable vertex tries to attach itself to an active
vertex. No synchronization necessary

3/17/16

21

Performance of the tree-grafting algorithm

Pothen-Fan: Azad et al. IPDPS 2012
Push-Relabel: Langguth et al. Parallel Computing 2014

B Push-Relabel
12 B pothen-Fan
B MS-BFS-Graft

(a) one core

o | i e

(b) 40 cores 18 35

g
£
£
$
g
g
B
3
2

< o 0 ® 2 w \! > v e e
e P e 63‘3"“3‘(@% b oVae'SBBL maw“‘m re” LIPS R i i
- B

Dulmage-Mendelsohn decomposition

1
123 456 7 8 91011 2

1o @ o o ofe 1 3

2 [] L N] [] HR 2 4 HC

3l e)

4 ° ° e ® 5 __

5 ° ° 4 6

6 ° 5 7

; o . SR 6 3 SC

8 ° 7 0

’ B 0

10 °

1 o0 VR ° 1 yC

12 ° 10

Dulmage-Mendelsohn decomposition

1. Find a “perfect matching” in the bipartite graph of the matrix.

2. Permute the matrix to have a zero free diagonal.

3. Find the “strongly connected components” of the directed
graph of the permuted matrix.

Let M be a maximum-size matching. Define:

VR = { rows reachable via alt. path from some unmatched row }

VC = { cols reachable via alt. path from some unmatched row }

HR = { rows reachable via alt. path from some unmatched col }

HC = { cols reachable via alt. path from some unmatched col }

SR=R-VR-HR

SC=C-VC-HC

Applications of D-M decomposition

+ Strongly connected components of directed graphs
» Connected components of undirected graphs
* Permutation to block triangular form for Ax=b
» Minimume-size vertex cover of bipartite graphs

« Extracting vertex separators from edge cuts

for arbitrary graphs

Nonzero structure prediction for sparse matrix
factorizations

3/17/16

22

