
3/17/16 

1 

CS267,	Spring	2016	
March	17,	2016	

	

Parallel	Graph	Algorithms	

Aydın	Buluç	
ABuluc@lbl.gov	

hFp://gauss.cs.ucsb.edu/~aydin/	
Lawrence	Berkeley	NaNonal	Laboratory	

Slide	acknowledgments:	A.	Azad,	S.	Beamer,	J.	Gilbert,	K.	Madduri	

Graph	Preliminaries	

n=|V|	(number	of	ver/ces)	
m=|E|	(number	of	edges)	
D=diameter	(max	#hops	between	any	pair	of	ver/ces)	
•  Edges	can	be	directed	or	undirected,	weighted	or	not.	
•  They	can	even	have	aDributes	(i.e.	seman/c	graphs)	
•  Sequences	of	edges	<u1,u2>,	<u2,u3>,	…	,<un-1,un>	is	a	
path	from	u1	to	un.	Its	length	is	the	sum	of	its	weights.	

Define: Graph G = (V,E)	
- a set of vertices and a set 
of edges between vertices	

	
Edge	

Vertex 

•  Applica/ons	
•  Designing	parallel	graph	algorithms	
•  Case	studies:		

A.   Graph	traversals:	Breadth-first	search	
B.   Shortest	Paths:	Delta-stepping,	Floyd-Warshall	
C.   Maximal	Independent	Sets:	Luby’s	algorithm	
D.   Strongly	Connected	Components	
E.   Maximum	Cardinality	Matching	
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Road	networks,	Point-to-point	shortest	paths:	15	seconds	(naïve)	à		10	microseconds	

RouNng	in	transportaNon	networks	

H.	Bast	et	al.,	“Fast	Rou/ng	in	Road	Networks	with	Transit	Nodes”,	Science	27,	2007.	

•  The	world-wide	web	can	be	represented	as	a	directed	graph	
–  Web	search	and	crawl:	traversal	
–  Link	analysis,	ranking:	Page	rank	and	HITS	
–  Document	classifica/on	and	clustering	

•  Internet	topologies	(router	networks)	are	naturally	modeled	
as	graphs	

Internet	and	the	WWW	
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PA	
Matching in bipartite graphs: Permuting to heavy diagonal or block triangular form  

Graph partitioning: Dynamic 
load balancing in parallel 
simulations  
Picture (left) credit: Sanders and Schulz 

Problem size: as big as the sparse 
linear system to be solved or the 
simulation to be performed 

Large	Graphs	in	ScienNfic	CompuNng	

•  Graph	abstrac/ons	are	very	useful	to	analyze	complex	data	sets.	
•  Sources	of	data:	simula/ons,	experimental	devices,	the	Internet,	

sensor	networks	
•  Challenges:	data	size,	heterogeneity,	uncertainty,	data	quality	

Large-scale	data	analysis	

Astrophysics: massive datasets,  
temporal variations  

Bioinformatics: data quality,  
heterogeneity 

Social Informatics: new analytics  
challenges, data uncertainty  

Image sources: (1) http://physics.nmt.edu/images/astro/hst_starfield.jpg (2,3) www.visualComplexity.com 
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Isomap	(Nonlinear	dimensionality	reducNon):	Preserves	the	
intrinsic	geometry	of	the	data	by	using	the	geodesic	distances	
on	manifold	between	all	pairs	of	points	
Tools	used	or	desired:		-	 	K-nearest	neighbors	
	 	 	 	 	 	 	- 	All	pairs	shortest	paths	(APSP)	
	 	 	 	 	 	 	- 	Top-k	eigenvalues	

Tenenbaum, Joshua B., Vin De Silva, and John C. Langford. "A global geometric framework for 
nonlinear dimensionality reduction." Science 290.5500 (2000): 2319-2323. 

Manifold	Learning		

Schatz et al. (2010) Perspective: Assembly of Large Genomes 
w/2nd-Gen Seq.  Genome Res. (figure reference) 

Whole genome assembly  
Graph Theoretical 
analysis of Brain 

Connectivity 

Poten/ally	millions	of	
neurons	and	billions	of	edges	
with	developing	technologies	

26	billion	(8B	of	which	are	non-erroneous)	
unique	k-mers	(ver/ces)	in	the	hexaploit	
wheat	genome	W7984	for	k=51	

Ver/ces:	k-mers	

Ver/ces:	reads	

Large	Graphs	in	Biology	
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•  Case	studies:		

A.   Graph	traversals:	Breadth-first	search	
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Lecture	Outline	

•  Many	PRAM	graph	algorithms	in	1980s.	
•  Idealized	parallel	shared	memory	system	model	
•  Unbounded	number	of	synchronous	processors;	
no	synchroniza/on,	communica/on	cost;	no	
parallel	overhead	

•  EREW	(Exclusive	Read	Exclusive	Write),	CREW	
(Concurrent	Read	Exclusive	Write)	

•  Measuring	performance:	space	and	/me	
complexity;	total	number	of	opera/ons	(work)	

The	PRAM	model	
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•  Pros	
–  Simple	and	clean	seman/cs.	
–  The	majority	of	theore/cal	parallel	algorithms	are	designed	
using	the	PRAM	model.	

–  Independent	of	the	communica/on	network	topology.	

•  Cons	
–  Not	realis/c,	too	powerful	communica/on	model.	
–  Communica/on	costs	are	ignored.	
–  Synchronized	processors.	
–  No	local	memory.	
–  Big-O	nota/on	is	oqen	misleading.	

PRAM	Pros	and	Cons	

Compressed	sparse	rows	(CSR)	=	cache-efficient	adjacency	lists	

Graph	representaNons	
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•  Each	processor	stores	the	en/re	graph		
				(“full	replica/on”)	
•  Each	processor	stores	n/p	ver/ces	and	all	adjacencies	
out	of	these	ver/ces	(“1D	par//oning”)	

•  How	to	create	these	“p”	vertex	par//ons?	
–  Graph	par//oning	algorithms:	recursively	op/mize	for	
conductance	(edge	cut/size	of	smaller	par//on)	

–  Randomly	shuffling	the	vertex	iden/fiers	ensures	that	edge	
count/processor	are	roughly	the	same		

Distributed	graph	representaNons	

•  Consider	a	logical	2D	processor	grid	(pr	*	pc	=	p)	and	
the	matrix	representa/on	of	the	graph	

•  Assign	each	processor	a	sub-matrix	(i.e,	the	edges	
within	the	sub-matrix)	

2D	checkerboard	distribuNon	
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9 vertices, 9 processors, 3x3 processor grid 

Flatten  
Sparse matrices 

Per-processor local graph  
representation  
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•  Applica/ons	
•  Designing	parallel	graph	algorithms	
•  Case	studies:		

A.   Graph	traversals:	Breadth-first	search	
B.   Shortest	Paths:	Delta-stepping,	Floyd-Warshall	
C.   Maximal	Independent	Sets:	Luby’s	algorithm	
D.   Strongly	Connected	Components	
E.   Maximum	Cardinality	Matching	

Lecture	Outline	

	

Graph	traversal:	Depth-first	search	(DFS)	
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procedure  DFS(vertex  v)
     v.visited = true
    previsit (v)
     for all v s.t. (v,w)∈ E
          if(!w.visited)  DFS(w)
    postvisit (v)

Parallelizing DFS is a bad idea:  span(DFS) = O(n) 
 J.H. Reif, Depth-first search is inherently sequential. Inform. Process. Lett. 20 (1985) 229-234.	

1 

preorder 
vertex number 

	

Graph	traversal	:	Breadth-first	search	(BFS)	
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Input: Output: 
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distance from  
source vertex 

Memory requirements (# of machine words): 
•  Sparse graph representation: m+n 
•  Stack of visited vertices: n 
•  Distance array: n 

Breadth-first search is a very important building block for other 
parallel graph algorithms such as (bipartite) matching, maximum 
flow, (strongly) connected components, betweenness centrality, etc. 

1.	Expand	current	fron/er	(level-synchronous	approach,	suited	for	low	diameter	graphs)	

	
	

Parallel	BFS	Strategies	

0 7

5

3

8

2

4 6

1

9
source  
vertex 

2. Stitch multiple concurrent traversals (Ullman-Yannakakis approach, 
suited for high-diameter graphs) 

•  O(D) parallel steps 
•  Adjacencies of all vertices  
in current frontier are  
visited in parallel 
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•  path-limited searches 
from “super vertices” 
•  APSP between “super 
vertices” 
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Breadth-first	search	
using	matrix	algebra	
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ALGORITHM:	
1.  Find	owners	of	the	current	fron/er’s	adjacency	[computa/on]	
2.  Exchange	adjacencies	via	all-to-all.	[communicaNon]	
3.  Update	distances/parents	for	unvisited	ver/ces.	[computa/on]	

x	
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1D	Parallel	BFS	algorithm	
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ALGORITHM:	
1.  Gather	ver/ces	in	processor	column	[communicaNon]	
2.  Find	owners	of	the	current	fron/er’s	adjacency	[computa/on]	
3.  Exchange	adjacencies	in	processor	row	[communicaNon]	
4.  Update	distances/parents	for	unvisited	ver/ces.	[computa/on]	

2D	Parallel	BFS	algorithm	

	

		
	

Performance	observaNons	of	the	level-synchronous	algorithm	
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Youtube social network 

When the frontier is 
at its peak, almost all 
edge examinations 
“fail” to claim a child 

I N T R O D U C T I O N

Poster template inspired by Sam Williams et al.

P    A    R    A    L    L    E    L        C    O    M    P    U    T    I    N    G        L    A    B   O    R    A    T    O    R    Y 

EECS 
Electrical Engineering and 

Computer Sciences BERKELEY PAR LAB 

EECS
Electrical Engineering and

Computer Sciences

Direction-Optimizing Breadth-First Search
Scott Beamer, Aydın Buluç, David Patterson, Krste Asanovi! 

! Are there more real-world large graph datasets?
! Is there a better heuristic for the hybrid algorithm?
! Can the distributed version be made more scalable?
! Could communication avoidance be applied to it?

! Breadth-First Search (BFS) is a key building 
block for many graph algorithms

! Common real-world graph properties
• Scale-free - exponential degree distribution
• Small-world - low effective diameter

! BFS implementation challenges
• Often have little locality (spatial or temporal)
• Low arithmetic intensity
• Usually bottlenecked by memory system
• Scale-free graphs are harder to load-balance
• Small-world graphs are harder to partition

O P E N    Q U E S T I O N S

O P T I M I Z I N G    D I R E C T I O N S H A R E D    M E M    A N A L Y S I S D I S T R I B U T E D    A P P R O A C H
Edge Check Types

Graph500
! Benchmark competition like Top500
! BFS on a synthetic social network
! Placed 17th in November 2011 rankings

• Quad Intel Xeon E7-8870 (Westmere-EX)
• 2.4GHz, 40 cores, 120MB L3, 256GB DRAM

! With a single node, beat clusters, Cray XMT, 
and Convey HC-1ex

Hybrid of Top-Down & Bottom-Up

01

1

1

! Combine both to get best of both
! Top-down for small frontier, bottom-up for large

 CTB =              CBT = 

01

1

1

Top-Down Bottom-Up

for all v in frontier
attempt to parent all
neighbors(v)

for all v in unvisited
find any parent
(neighbor(v) in frontier)

Advantageous When...
! Frontier becomes a significant portion of graph

• Graph has low-effective diameter
• Searching a large connected component

! Undirected helps with memory overhead

Time Breakdown
 # unexplored edges 

  α

!Challenge: Fast frontier membership test
    Solution: 2D decomposition

& frontier bitmaps

!Challenge: Sequentialize inner loop
    Solution: Temporal decomposition 

  by striping active
portion along row
and rotating
progress info

Challenges Caused by Distributed Memory

BFS will use the top-down approach for the beginning and
end of the search and the bottom-up approach for the middle
steps when the frontier is its largest.

IV. PARALLEL TOP-DOWN BFS

Data distribution plays a critical role in parallelizing BFS
on distributed-memory machines. The approach of partitioning
vertices to individual processors (along with their outgoing
edges) is the so-called 1D partitioning. By contrast, 2D par-
titioning assigns vertices to groups of processors (along with
their outgoing edges), which are further assigned to members
of the group. 2D checkerboard partitioning assumes the sparse
adjacency matrix of the graph is partitioned as follows:

A =

0

B@
A1,1 . . . A1,pc

...
. . .

...
Apr,1 . . . Apr,pc

1

CA (1)

Processors are logically organized on a square p = pr ⇥ pc
mesh, indexed by their row and column indices. Submatrix
Aij is assigned to processor P (i, j).

Algorithm 3 Parallel 2D BFS algorithm in linear algebraic
notation [6]
Input: A: undirected graph represented by a boolean sparse

adjacency matrix, s: source vertex id.
Output: �: dense vector, where �[v] is the predecessor vertex

on the shortest path from s to v, or �1 if v is unreachable.
1: procedure BFS 2D(A, s)
2: f(s) ⇧ s ⇥ f is the current frontier
3: for all processors P (i, j) in parallel do
4: while f ⌃= ⌥ do
5: TRANSPOSEVECTOR(fij)
6: fi ⇧ ALLGATHERV(fij , P (:, j))
7: ti ⇧ Aij ⇤ fi ⇥ t is candidate parents
8: tij ⇧ ALLTOALLV(ti, P (i, :))
9: tij ⇧ tij ⌅ �ij

10: �ij ⇧ �ij + tij
11: fij ⇧ tij

The pseudocode for parallel BFS algorithm with 2D parti-
tioning is given in Algorithm 3 for completeness. Both f and
t are implemented as sparse vectors. For distributed vectors,
the syntax vij denotes the local n/p sized piece of the vector
owned by the P (i, j)th processor. The syntax vi denotes the
hypothetical n/pr sized piece of the vector collectively owned
by all the processors along the ith processor row P (i, :). The
algorithm has four major steps:

• Expand: For all locally owned edges, gather their
originating vertices (line 6).

• Local discovery: Find (partial) owners of the current
frontier’s adjacency (line 7).

• Fold: Exchange discovered adjacencies (line 8).
• Local update: Update distances/parents for unvisited

vertices (lines 9, 10, and 11).

In contrast to the 1D case, communication in 2D algorithm
happens only along one processor dimension. If Expand hap-
pens along one processor dimension, then Fold happens along
the other processor dimension. Both 1D and 2D algorithms can
be enhanced by in-node multithreading, resulting into the use
of one MPI process per chip instead of one MPI process per
core. Large scale experiments of these four different options
on NERSC’s Hopper, a state-of-the-art supercomputer, show
that the 2D approach’s communication costs are lower than
the respective 1D approach [6]. The study also shows that
in-node multithreading gives a further performance boost by
decreasing contention in network.

V. PARALLEL BOTTOM-UP BFS

Implementing a bottom-up BFS on a cluster with distributed
memory introduces some challenges that are not present in
the shared memory case. The speedup from the algorithm
is dependent on fast membership tests for the frontier and
sequentializing the inner loop. One a single compute node,
the fast (constant time) membership tests for the frontier can
be efficiently implemented with a bitmap that often fits in the
last level of cache. Sequentializing the inner loop is trivial
since the outer loop can provide the needed parallelism and
any processor in a shared memory system has access to all of
the data.

To implement a fast frontier membership test on a cluster
is more challenging. In this context, fast corresponds to being
able to determine whether a vertex is in the frontier without
crossing the network. To do this, the entire frontier needs to be
held in each processor’s memory, and this is clearly unscalable.
Fortunately, the 2D decomposition [6] [15] greatly aids this,
since for each processor, only a small subset of vertices can
be the sources of a processor’s incoming edges. This subset is
small enough that it can fit in a processor’s memory. To get
constant time access, it can be represented with a dense vector.
It may not be much bigger (or even smaller than) a sparse
vector because the frontier will be large during the bottom-up
steps and it can be compressed by using a bitmap.

Although the 2D decomposition helps with providing fast
frontier checks, it complicates serializing the inner loop. Since
all of the edges for a given vertex are spread across multiple
processors, the examination of a vertex’s neighbors will be
done in parallel. If the inner loop is not serialized, the bottom-
up approach’s advantage of terminating the inner loop early
once a parent is found will be hard to maintain. If it is done
in parallel, unnecessary edges could be examined during the
time it takes for the termination message to propagate across
the network.

To solve this problem, we propose serializing the processing
of a vertex’s edges by partitioning the work temporally. We
break down the search step into pc sub-steps, and during each
sub-step, a given vertex’s edges will be examined by only
one processor. During each sub-step, a processor processes
(1/pc)th of the vertices in the row. After each sub-step, it
passes on the responsibility for those vertices to its right
neighbor and accepts new vertices from its left neighbor. This

B R E A D T H - F I R S T  S E A R C H
Sample Search with Classic Algorithm
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Sufficient Check
Extra Check

Insight
! Many edges are

examined unnecessarily
! Classic algorithm is:
Top-Down

! What if went Bottom-Up?

S H A R E D    M E M    R E S U L T S

Neighbor Types

 # nodes 
β

Top-
Down

Bottom-
Up

mf  > CTB & growing

nf  < CBT & shrinking

mf  ≤ CTB nf  ≥ CBT

Start
(convert)

(convert)

!  Built with Aydın's CombBLAS 
 framework (MPI in C++)

!  Achieved 243 GTEPS with 115.6K cores on Hopper

Implementation Details

Results on Titan
Weak Scaling w/ Kronecker Strong Scaling w/ Twitter

Sensitivity to Degree Time Breakdown

I N T R O D U C T I O N

Poster template inspired by Sam Williams et al.

P    A    R    A    L    L    E    L        C    O    M    P    U    T    I    N    G        L    A    B   O    R    A    T    O    R    Y 

EECS 
Electrical Engineering and 

Computer Sciences BERKELEY PAR LAB 
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Electrical Engineering and
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Direction-Optimizing Breadth-First Search
Scott Beamer, Aydın Buluç, David Patterson, Krste Asanovi! 

! Are there more real-world large graph datasets?
! Is there a better heuristic for the hybrid algorithm?
! Can the distributed version be made more scalable?
! Could communication avoidance be applied to it?

! Breadth-First Search (BFS) is a key building 
block for many graph algorithms

! Common real-world graph properties
• Scale-free - exponential degree distribution
• Small-world - low effective diameter

! BFS implementation challenges
• Often have little locality (spatial or temporal)
• Low arithmetic intensity
• Usually bottlenecked by memory system
• Scale-free graphs are harder to load-balance
• Small-world graphs are harder to partition

O P E N    Q U E S T I O N S

O P T I M I Z I N G    D I R E C T I O N S H A R E D    M E M    A N A L Y S I S D I S T R I B U T E D    A P P R O A C H
Edge Check Types

Graph500
! Benchmark competition like Top500
! BFS on a synthetic social network
! Placed 17th in November 2011 rankings

• Quad Intel Xeon E7-8870 (Westmere-EX)
• 2.4GHz, 40 cores, 120MB L3, 256GB DRAM

! With a single node, beat clusters, Cray XMT, 
and Convey HC-1ex

Hybrid of Top-Down & Bottom-Up

01

1

1

! Combine both to get best of both
! Top-down for small frontier, bottom-up for large

 CTB =              CBT = 

01

1

1

Top-Down Bottom-Up

for all v in frontier
attempt to parent all
neighbors(v)

for all v in unvisited
find any parent
(neighbor(v) in frontier)

Advantageous When...
! Frontier becomes a significant portion of graph

• Graph has low-effective diameter
• Searching a large connected component

! Undirected helps with memory overhead

Time Breakdown
 # unexplored edges 

  α

!Challenge: Fast frontier membership test
    Solution: 2D decomposition

& frontier bitmaps

!Challenge: Sequentialize inner loop
    Solution: Temporal decomposition 

  by striping active
portion along row
and rotating
progress info

Challenges Caused by Distributed Memory

BFS will use the top-down approach for the beginning and
end of the search and the bottom-up approach for the middle
steps when the frontier is its largest.

IV. PARALLEL TOP-DOWN BFS

Data distribution plays a critical role in parallelizing BFS
on distributed-memory machines. The approach of partitioning
vertices to individual processors (along with their outgoing
edges) is the so-called 1D partitioning. By contrast, 2D par-
titioning assigns vertices to groups of processors (along with
their outgoing edges), which are further assigned to members
of the group. 2D checkerboard partitioning assumes the sparse
adjacency matrix of the graph is partitioned as follows:

A =

0

B@
A1,1 . . . A1,pc

...
. . .

...
Apr,1 . . . Apr,pc

1

CA (1)

Processors are logically organized on a square p = pr ⇥ pc
mesh, indexed by their row and column indices. Submatrix
Aij is assigned to processor P (i, j).

Algorithm 3 Parallel 2D BFS algorithm in linear algebraic
notation [6]
Input: A: undirected graph represented by a boolean sparse

adjacency matrix, s: source vertex id.
Output: �: dense vector, where �[v] is the predecessor vertex

on the shortest path from s to v, or �1 if v is unreachable.
1: procedure BFS 2D(A, s)
2: f(s) ⇧ s ⇥ f is the current frontier
3: for all processors P (i, j) in parallel do
4: while f ⌃= ⌥ do
5: TRANSPOSEVECTOR(fij)
6: fi ⇧ ALLGATHERV(fij , P (:, j))
7: ti ⇧ Aij ⇤ fi ⇥ t is candidate parents
8: tij ⇧ ALLTOALLV(ti, P (i, :))
9: tij ⇧ tij ⌅ �ij

10: �ij ⇧ �ij + tij
11: fij ⇧ tij

The pseudocode for parallel BFS algorithm with 2D parti-
tioning is given in Algorithm 3 for completeness. Both f and
t are implemented as sparse vectors. For distributed vectors,
the syntax vij denotes the local n/p sized piece of the vector
owned by the P (i, j)th processor. The syntax vi denotes the
hypothetical n/pr sized piece of the vector collectively owned
by all the processors along the ith processor row P (i, :). The
algorithm has four major steps:

• Expand: For all locally owned edges, gather their
originating vertices (line 6).

• Local discovery: Find (partial) owners of the current
frontier’s adjacency (line 7).

• Fold: Exchange discovered adjacencies (line 8).
• Local update: Update distances/parents for unvisited

vertices (lines 9, 10, and 11).

In contrast to the 1D case, communication in 2D algorithm
happens only along one processor dimension. If Expand hap-
pens along one processor dimension, then Fold happens along
the other processor dimension. Both 1D and 2D algorithms can
be enhanced by in-node multithreading, resulting into the use
of one MPI process per chip instead of one MPI process per
core. Large scale experiments of these four different options
on NERSC’s Hopper, a state-of-the-art supercomputer, show
that the 2D approach’s communication costs are lower than
the respective 1D approach [6]. The study also shows that
in-node multithreading gives a further performance boost by
decreasing contention in network.

V. PARALLEL BOTTOM-UP BFS

Implementing a bottom-up BFS on a cluster with distributed
memory introduces some challenges that are not present in
the shared memory case. The speedup from the algorithm
is dependent on fast membership tests for the frontier and
sequentializing the inner loop. One a single compute node,
the fast (constant time) membership tests for the frontier can
be efficiently implemented with a bitmap that often fits in the
last level of cache. Sequentializing the inner loop is trivial
since the outer loop can provide the needed parallelism and
any processor in a shared memory system has access to all of
the data.

To implement a fast frontier membership test on a cluster
is more challenging. In this context, fast corresponds to being
able to determine whether a vertex is in the frontier without
crossing the network. To do this, the entire frontier needs to be
held in each processor’s memory, and this is clearly unscalable.
Fortunately, the 2D decomposition [6] [15] greatly aids this,
since for each processor, only a small subset of vertices can
be the sources of a processor’s incoming edges. This subset is
small enough that it can fit in a processor’s memory. To get
constant time access, it can be represented with a dense vector.
It may not be much bigger (or even smaller than) a sparse
vector because the frontier will be large during the bottom-up
steps and it can be compressed by using a bitmap.

Although the 2D decomposition helps with providing fast
frontier checks, it complicates serializing the inner loop. Since
all of the edges for a given vertex are spread across multiple
processors, the examination of a vertex’s neighbors will be
done in parallel. If the inner loop is not serialized, the bottom-
up approach’s advantage of terminating the inner loop early
once a parent is found will be hard to maintain. If it is done
in parallel, unnecessary edges could be examined during the
time it takes for the termination message to propagate across
the network.

To solve this problem, we propose serializing the processing
of a vertex’s edges by partitioning the work temporally. We
break down the search step into pc sub-steps, and during each
sub-step, a given vertex’s edges will be examined by only
one processor. During each sub-step, a processor processes
(1/pc)th of the vertices in the row. After each sub-step, it
passes on the responsibility for those vertices to its right
neighbor and accepts new vertices from its left neighbor. This

B R E A D T H - F I R S T  S E A R C H
Sample Search with Classic Algorithm
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!  Achieved 243 GTEPS with 115.6K cores on Hopper
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Results on Titan
Weak Scaling w/ Kronecker Strong Scaling w/ Twitter

Sensitivity to Degree Time Breakdown
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Classical	(top-down)	algorithm	is	op/mal	in	worst	case,	but	
pessimis/c	for	low-diameter	graphs	(previous	slide).	

BoFom-up	BFS	algorithm		

I N T R O D U C T I O N

Poster template inspired by Sam Williams et al.

P    A    R    A    L    L    E    L        C    O    M    P    U    T    I    N    G        L    A    B   O    R    A    T    O    R    Y 

EECS 
Electrical Engineering and 

Computer Sciences BERKELEY PAR LAB 

EECS
Electrical Engineering and

Computer Sciences

Direction-Optimizing Breadth-First Search
Scott Beamer, Aydın Buluç, David Patterson, Krste Asanovi! 

! Are there more real-world large graph datasets?
! Is there a better heuristic for the hybrid algorithm?
! Can the distributed version be made more scalable?
! Could communication avoidance be applied to it?

! Breadth-First Search (BFS) is a key building 
block for many graph algorithms

! Common real-world graph properties
• Scale-free - exponential degree distribution
• Small-world - low effective diameter

! BFS implementation challenges
• Often have little locality (spatial or temporal)
• Low arithmetic intensity
• Usually bottlenecked by memory system
• Scale-free graphs are harder to load-balance
• Small-world graphs are harder to partition

O P E N    Q U E S T I O N S

O P T I M I Z I N G    D I R E C T I O N S H A R E D    M E M    A N A L Y S I S D I S T R I B U T E D    A P P R O A C H
Edge Check Types

Graph500
! Benchmark competition like Top500
! BFS on a synthetic social network
! Placed 17th in November 2011 rankings

• Quad Intel Xeon E7-8870 (Westmere-EX)
• 2.4GHz, 40 cores, 120MB L3, 256GB DRAM

! With a single node, beat clusters, Cray XMT, 
and Convey HC-1ex

Hybrid of Top-Down & Bottom-Up

01

1

1

! Combine both to get best of both
! Top-down for small frontier, bottom-up for large

 CTB =              CBT = 

01

1

1

Top-Down Bottom-Up

for all v in frontier
attempt to parent all
neighbors(v)

for all v in unvisited
find any parent
(neighbor(v) in frontier)

Advantageous When...
! Frontier becomes a significant portion of graph

• Graph has low-effective diameter
• Searching a large connected component

! Undirected helps with memory overhead

Time Breakdown
 # unexplored edges 

  α

!Challenge: Fast frontier membership test
    Solution: 2D decomposition

& frontier bitmaps

!Challenge: Sequentialize inner loop
    Solution: Temporal decomposition 

  by striping active
portion along row
and rotating
progress info

Challenges Caused by Distributed Memory

BFS will use the top-down approach for the beginning and
end of the search and the bottom-up approach for the middle
steps when the frontier is its largest.

IV. PARALLEL TOP-DOWN BFS

Data distribution plays a critical role in parallelizing BFS
on distributed-memory machines. The approach of partitioning
vertices to individual processors (along with their outgoing
edges) is the so-called 1D partitioning. By contrast, 2D par-
titioning assigns vertices to groups of processors (along with
their outgoing edges), which are further assigned to members
of the group. 2D checkerboard partitioning assumes the sparse
adjacency matrix of the graph is partitioned as follows:

A =

0

B@
A1,1 . . . A1,pc

...
. . .

...
Apr,1 . . . Apr,pc

1

CA (1)

Processors are logically organized on a square p = pr ⇥ pc
mesh, indexed by their row and column indices. Submatrix
Aij is assigned to processor P (i, j).

Algorithm 3 Parallel 2D BFS algorithm in linear algebraic
notation [6]
Input: A: undirected graph represented by a boolean sparse

adjacency matrix, s: source vertex id.
Output: �: dense vector, where �[v] is the predecessor vertex

on the shortest path from s to v, or �1 if v is unreachable.
1: procedure BFS 2D(A, s)
2: f(s) ⇧ s ⇥ f is the current frontier
3: for all processors P (i, j) in parallel do
4: while f ⌃= ⌥ do
5: TRANSPOSEVECTOR(fij)
6: fi ⇧ ALLGATHERV(fij , P (:, j))
7: ti ⇧ Aij ⇤ fi ⇥ t is candidate parents
8: tij ⇧ ALLTOALLV(ti, P (i, :))
9: tij ⇧ tij ⌅ �ij

10: �ij ⇧ �ij + tij
11: fij ⇧ tij

The pseudocode for parallel BFS algorithm with 2D parti-
tioning is given in Algorithm 3 for completeness. Both f and
t are implemented as sparse vectors. For distributed vectors,
the syntax vij denotes the local n/p sized piece of the vector
owned by the P (i, j)th processor. The syntax vi denotes the
hypothetical n/pr sized piece of the vector collectively owned
by all the processors along the ith processor row P (i, :). The
algorithm has four major steps:

• Expand: For all locally owned edges, gather their
originating vertices (line 6).

• Local discovery: Find (partial) owners of the current
frontier’s adjacency (line 7).

• Fold: Exchange discovered adjacencies (line 8).
• Local update: Update distances/parents for unvisited

vertices (lines 9, 10, and 11).

In contrast to the 1D case, communication in 2D algorithm
happens only along one processor dimension. If Expand hap-
pens along one processor dimension, then Fold happens along
the other processor dimension. Both 1D and 2D algorithms can
be enhanced by in-node multithreading, resulting into the use
of one MPI process per chip instead of one MPI process per
core. Large scale experiments of these four different options
on NERSC’s Hopper, a state-of-the-art supercomputer, show
that the 2D approach’s communication costs are lower than
the respective 1D approach [6]. The study also shows that
in-node multithreading gives a further performance boost by
decreasing contention in network.

V. PARALLEL BOTTOM-UP BFS

Implementing a bottom-up BFS on a cluster with distributed
memory introduces some challenges that are not present in
the shared memory case. The speedup from the algorithm
is dependent on fast membership tests for the frontier and
sequentializing the inner loop. One a single compute node,
the fast (constant time) membership tests for the frontier can
be efficiently implemented with a bitmap that often fits in the
last level of cache. Sequentializing the inner loop is trivial
since the outer loop can provide the needed parallelism and
any processor in a shared memory system has access to all of
the data.

To implement a fast frontier membership test on a cluster
is more challenging. In this context, fast corresponds to being
able to determine whether a vertex is in the frontier without
crossing the network. To do this, the entire frontier needs to be
held in each processor’s memory, and this is clearly unscalable.
Fortunately, the 2D decomposition [6] [15] greatly aids this,
since for each processor, only a small subset of vertices can
be the sources of a processor’s incoming edges. This subset is
small enough that it can fit in a processor’s memory. To get
constant time access, it can be represented with a dense vector.
It may not be much bigger (or even smaller than) a sparse
vector because the frontier will be large during the bottom-up
steps and it can be compressed by using a bitmap.

Although the 2D decomposition helps with providing fast
frontier checks, it complicates serializing the inner loop. Since
all of the edges for a given vertex are spread across multiple
processors, the examination of a vertex’s neighbors will be
done in parallel. If the inner loop is not serialized, the bottom-
up approach’s advantage of terminating the inner loop early
once a parent is found will be hard to maintain. If it is done
in parallel, unnecessary edges could be examined during the
time it takes for the termination message to propagate across
the network.

To solve this problem, we propose serializing the processing
of a vertex’s edges by partitioning the work temporally. We
break down the search step into pc sub-steps, and during each
sub-step, a given vertex’s edges will be examined by only
one processor. During each sub-step, a processor processes
(1/pc)th of the vertices in the row. After each sub-step, it
passes on the responsibility for those vertices to its right
neighbor and accepts new vertices from its left neighbor. This

B R E A D T H - F I R S T  S E A R C H
Sample Search with Classic Algorithm
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1
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1

1

2

2

2
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1

1

2
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2

Sufficient Check
Extra Check

Insight
! Many edges are

examined unnecessarily
! Classic algorithm is:
Top-Down

! What if went Bottom-Up?

S H A R E D    M E M    R E S U L T S

Neighbor Types

 # nodes 
β

Top-
Down

Bottom-
Up

mf  > CTB & growing

nf  < CBT & shrinking

mf  ≤ CTB nf  ≥ CBT

Start
(convert)

(convert)

!  Built with Aydın's CombBLAS 
 framework (MPI in C++)

!  Achieved 243 GTEPS with 115.6K cores on Hopper

Implementation Details

Results on Titan
Weak Scaling w/ Kronecker Strong Scaling w/ Twitter

Sensitivity to Degree Time Breakdown

DirecNon	OpNmizaNon:		
-  Switch	from	top-down	to	

boDom-up	search		
-  When	the	majority	of	the	

ver/ces	are	discovered.	
[Read	paper	for	exact	heuris/c]	

Scott Beamer, Krste Asanović, and David Patterson, "Direction-Optimizing Breadth-First Search", 
Int. Conf. on High Performance Computing, Networking, Storage and Analysis (SC), 2012	

•  Adop/on	of	the	2D	algorithm	created	the	first	quantum	leap	
•  The	second	quantum	leap	comes	from	the	boDom-up	search	

-  Can we just do bottom-up on 1D? 
-  Yes, if you have in-network fast frontier membership queries  

•  IBM by-passed MPI to achieve this [Checconi & Petrini, IPDPS’14] 

•  Unrealistic and counter-productive in general 

•  2D	par//oning	reduces	the	required	fron/er	segment	by	a	
factor	of	pc	(typically	√p),	without	fast	in-network	reduc/ons	

•  Challenge:	Inner	loop	is	serialized	

DirecNon	opNmizing	BFS	with	2D	decomposiNon	

Solution: Temporally 
partition the work  
•  Temporal Division - a 

vertex is processed 
by at most one 
processor at a time  

•  Systolic Rotation - 
send completion 
information to next 
processor so it knows 
what to skip  

 

DirecNon	opNmizing	BFS	with	2D	decomposiNon	

Solution: Temporally 
partition the work  
•  Temporal Division - a 

vertex is processed 
by at most one 
processor at a time  

•  Systolic Rotation - 
send completion 
information to next 
processor so it knows 
what to skip  

 

DirecNon	opNmizing	BFS	with	2D	decomposiNon	
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•  ORNL	Titan	(Cray	XK6,	Gemini	interconnect	AMD	Interlagos)	
•  Kronecker	(Graph500):	16	billion	ver/ces	and	256	billion	edges.	

	 

DirecNon	opNmizing	BFS	with	2D	decomposiNon	

ScoD	Beamer,	Aydın	Buluç,	Krste	Asanović,	and	David	PaDerson,	"Distributed	Memory	Breadth-First	Search	
Revisited:	Enabling	BoDom-Up	Search”,	IPDPSW,	2013 

~8X 

Goal:		
•  Traverse	the	de	Bruijn	graph	and	find	UU	con/gs	(chains	of	UU	

nodes),	or	alterna8vely		
•  find	the	connected	components	which	consist	of	the	UU	con/gs.	

	
	

•  Main	idea:	
–  Pick	a	seed		
–  Itera/vely	extend	it	by	consecu/ve	lookups	in	the	distributed	hash	
table	(vertex	=	k-mer	=	key,	edge	=	extension	=	value)	

GAT ATC TCT CTG TGA 
AAC 

ACC 

CCG 

AAT 

ATG 

TGC 

Con/g	1:	GATCTGA	
Con/g	2:	AACCG	

Con/g	3:	AATGC	

Parallel	De	Bruijn	Graph	Traversal	

CGTATTGCCAATGCAACGTATCATGGCCAATCCGAT	

Assume	one	of	the	UU	con/gs	to	be	assembled	is:	

Parallel	De	Bruijn	Graph	Traversal	

CGTATTGCCAATGCAACGTATCATGGCCAATCCGAT	

Processor	Pi	picks	a	random	k-mer	from	the	distributed	hash	table	as	seed:	

Pi	knows	that	forward	extension	is	A	

Pi	uses	the	last	k-1	bases	and	the	forward	extension	and	forms:	CAACGTATCA	

Pi	does	a	lookup	in	the	distributed	hash	table	for	CAACGTATCA	

Pi	iterates	this	process	un/l	it	reaches	the	“right”	endpoint	of	the	UU	con/g	

Pi	also	iterates	this	process	backwards	un/l	it	reaches	the	“leq”	endpoint	of	the	
UU	con/g	

Parallel	De	Bruijn	Graph	Traversal	



3/17/16 

10 

CGTATTGCCAATGCAACGTATCATGGCCAATCCGAT	

However,	processors	Pi,	Pj	and	Pt	might	have	picked	ini/al	seeds	from	
the	same	UU	con/g	

Pi	 Pj	 Pt	

•  Processors	Pi,	Pj	and	Pt		have	to	collaborate	and	concatenate	subcon/gs	
in	order	to	avoid	redundant	work.	

	
•  SoluNon:	lightweight	synchroniza/on	scheme	based	on	a	state	machine	

MulNple	processors	on	the	same	UU	conNg	
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2243A Graph-Theoretic Approach to Comparing and Integrating Maps

Figure 9.—Integrated graph of chro-
mosome 1. Locus orders specified by
DH01, SL01, and JP98 are indicated by
boldface red, dashed green, and blue
arrows, respectively. (A) Complete inte-
grated graph of chromosome 1 showing
two SCCs. (B) Top portion of the inte-
grated graph. This rendering is iso-
morphic to the corresponding subgraph
in A. The graph has been redrawn to
better illustrate certain relationships. An
ambiguous interval between SL01 and
JP98 is indicated by a blue-shaded box.
This overlaps or encompasses certain
ambiguous intervals between SL01 and
DH01, indicated by magenta boxes with
rounded corners.

cluded the edge RZ19 → RG690, which is the order RM403 → RG345specified on the DH01 map with a distance of 6.5 cM
between these two loci. The other half included the RG381 → RZ730
opposing edge RG690 → RZ19, which is the order on RG331 → RG350the SL01 map at 3.7 cM. Sequence for RZ19 and RG690
can be found in GenBank with accessions G73632 and RG345 → RG381
AQ074147, which can be mapped to genomic BAC/

Of these nine edges, two have already been accountedPACs AP002972 and AP003377, respectively. Since the
for. Hence only seven edges with seven markers need toBAC/PACs were ordered AP002972 → AP003377, the
be examined more closely. First, the two markers RG331loci are therefore ordered RZ19 → RG690 on the se-
and RG350 appear together on the same map only onquence-based map.
SL01. Their order, RG331 → RG350, is confirmed byTo resolve the rest of the region, note that the 12
comparison to chromosome 1 sequence (Table 1). Next,MFES specified only nine edges and nine markers:
observe that the distance between RM403 and RG345
is only 1.6 cM on the SL01 map while the same twoRG381 → RM403
markers mapped in reverse order at a distance of 16RZ19 → RG690 cM on the DH01 map. This suggests that the order of

RG690 → RZ19 these two markers may have been reversed on the SL01
map due to a low frequency of recombination in thisC86 → RG381 region, while ordering was much clearer on the DH01
population in which recombination was high, providingRG350 → C86

Genetic linkage map, courtesy Yan et al. 

Low	diameter	graph	(R-MAT)	
vs.	

Long	skinny	graph	(genomics)	

Moral:	One	traversal	algorithm	does	not	fit	all	graphs	

•  Applica/ons	
•  Designing	parallel	graph	algorithms	
•  Case	studies:		

A.   Graph	traversals:	Breadth-first	search	
B.   Shortest	Paths:	Delta-stepping,	Floyd-Warshall	
C.   Maximal	Independent	Sets:	Luby’s	algorithm	
D.   Strongly	Connected	Components	
E.   Maximum	Cardinality	Matching	

Lecture	Outline	 Parallel	Single-source	Shortest	Paths	
(SSSP)	algorithms	
•  Famous	serial	algorithms:		

–  Bellman-Ford	:	label	correc/ng	-	works	on	any	graph	
–  Dijkstra	:	label	se~ng	–	requires	nonnega/ve	edge	weights	

•  No	known	PRAM	algorithm	that	runs	in	sub-linear	/me	and	
O(m+n	log	n)	work	

•  Ullman-Yannakakis	randomized	approach		
•  Meyer	and	Sanders,	∆	-	stepping	algorithm	

•  Chakaravarthy	et	al.,	clever	combina/on	of	∆	-	stepping	and	
direc/on	op/miza/on	(BFS)	on	supercomputer-scale	graphs.	

V.	T.	Chakaravarthy,	F.	Checconi,	F.	Petrini,	Y.	Sabharwal		
“Scalable	Single	Source	Shortest	Path	Algorithms	for	Massively	Parallel	Systems	”,	IPDPS’14	

U.	Meyer	and	P.Sanders,	∆	-	stepping:	a	parallelizable	shortest	path	algorithm.		
Journal	of	Algorithms	49	(2003)	
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∆	-	stepping	algorithm	

•  Label-correc8ng	algorithm:	Can	relax	edges	from	
unseDled	ver/ces	also	

•  “approximate	bucket	implementa/on	of	Dijkstra”	
•  For	random	edge	weighs	[0,1],		runs	in		
				where	L	=	max	distance	from	source	to	any	node	
•  Ver/ces	are	ordered	using	buckets	of	width	∆	
•  Each	bucket	may	be	processed	in	parallel	
•  Basic	opera/on:	Relax	(	e(u,v)	)	

	d(v)	=	min	{	d(v),	d(u)	+	w(u,	v)	}		

∆	<	min	w(e)	:	Degenerates	into	Dijkstra	
∆	>	max	w(e)	:	Degenerates	into	Bellman-Ford	
	

O(n+m+D ⋅L)
0.01 

∆	-	stepping	algorithm:	illustraNon	
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One parallel phase 
while (bucket is non-empty) 

i)  Inspect light (w < ∆) edges 
ii)  Construct a set of 

“requests” (R) 
iii)  Clear the current bucket 
iv)  Remember deleted vertices 

(S) 
v)  Relax request pairs in R 

Relax heavy request pairs (from S) 
Go on to the next bucket ∞ ∞ ∞ ∞ ∞ ∞ ∞ 

∆ = 0.1 
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∆	-	stepping	algorithm:	illustraNon	
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while (bucket is non-empty) 

i)  Inspect light (w < ∆) edges 
ii)  Construct a set of 
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iii)  Clear the current bucket 
iv)  Remember deleted vertices 

(S) 
v)  Relax request pairs in R 

Relax heavy request pairs (from S) 
Go on to the next bucket 0 ∞ ∞ ∞ ∞ ∞ ∞ 

Initialization: 
Insert s into bucket, d(s) = 0 0 0 
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∆	-	stepping	algorithm:	illustraNon	
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∆	-	stepping	algorithm:	illustraNon	
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Go on to the next bucket 0 ∞ .01 ∞ ∞ ∞ ∞ 

2 
R 

0 S 
0 

1 3 
.03 .06 

0.01 

∆	-	stepping	algorithm:	illustraNon	

1

2

3

4

5

6

0.13 

0

0.31 

0.15 

0.05 

0.07 

0.23 

0.56 

0.02 

d array 
0    1     2     3    4     5     6 

Buckets 

One parallel phase 
while (bucket is non-empty)  

i)  Inspect light (w < ∆) edges 
ii)  Construct a set of 

“requests” (R) 
iii)  Clear the current bucket 
iv)  Remember deleted vertices 

(S) 
v)  Relax request pairs in R 

Relax heavy request pairs (from S) 
Go on to the next bucket 0 ∞ .01 ∞ ∞ ∞ ∞ 

R 

0 S 
0 

1 3 
.03 .06 

2 
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0.01 

∆	-	stepping	algorithm:	illustraNon	

1

2

3

4

5

6

0.13 

0

0.31 

0.15 

0.05 

0.07 

0.23 

0.56 

0.02 

d array 
0    1     2     3    4     5     6 

Buckets 

One parallel phase 
while (bucket is non-empty)  

i)  Inspect light (w < ∆) edges 
ii)  Construct a set of 

“requests” (R) 
iii)  Clear the current bucket 
iv)  Remember deleted vertices 

(S) 
v)  Relax request pairs in R 

Relax heavy request pairs (from S) 
Go on to the next bucket 0 .03 .01 .06 ∞ ∞ ∞ 

R 

0 S 
0 

2 
1 3 

0.01 

∆	-	stepping	algorithm:	illustraNon	

1

2

3

4

5

6

0.13 

0

0.31 

0.15 

0.05 

0.07 

0.23 

0.56 

0.02 

d array 
0    1     2     3    4     5     6 

Buckets 

One parallel phase 
while (bucket is non-empty)  

i)  Inspect light (w < ∆) edges 
ii)  Construct a set of 

“requests” (R) 
iii)  Clear the current bucket 
iv)  Remember deleted vertices 

(S) 
v)  Relax request pairs in R 

Relax heavy request pairs (from S) 
Go on to the next bucket 0 .03 .01 .06 .16 .29 .62 

R 

0 S 

1 

2 1 3 2 
6 

4 
5 
6 

No.	of	phases	(machine-independent	performance	count)			

Graph Family

Rnd-rnd Rnd-logU Scale-free LGrid-rnd LGrid-logU SqGrid USAd NE USAt NE

N
o.

 o
f p

ha
se

s

10

100

1000

10000

100000

1000000

low  
diameter 

high  
diameter 

Too many phases in high diameter graphs:  
Level-synchronous breadth-first search has the same problem. 

Average	shortest	path	weight	for	various	graph	families	
~	220	verNces,	222	edges,	directed	graph,	edge	weights	normalized	to	[0,1]		

Graph Family

Rnd-rnd Rnd-logU Scale-free LGrid-rnd LGrid-logU SqGrid USAd NE USAt NE

A
ve

ra
ge

 s
ho

rte
st

 p
at

h 
w

ei
gh

t

0.01

0.1

1

10

100

1000

10000

100000
Complexity: 
 
L: maximum distance 
(shortest path length)  

O(n+m+D ⋅L)
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•  Input:	Directed	graph	with	“costs”	on	edges	
•  Find	least-cost	paths	between	all	reachable	vertex	pairs	
•  Classical	algorithm:	Floyd-Warshall	

	
•  It	turns	out	a	previously	overlooked	recursive	version	is	
more	parallelizable	than	the	triple	nested	loop	

for k=1:n  // the induction sequence 
 for i = 1:n 
  for j = 1:n 
   if(w(i→k)+w(k→j) < w(i→j)) 

    w(i→j):= w(i→k) + w(k→j)  

 

1 5 2 3 4 
1 

5 

2 

3 

4 

k = 1 case 

All-pairs	shortest-paths	problem	
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D 
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A = A*;     % recursive call 
B = AB;  C = CA;   
D = D + CB; 
D = D*;     % recursive call 
B = BD;  C = DC; 
A = A + BC; 

+  is “min”,   ×  is “add” 

V1 V2 
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The cost of 
3-1-2 path 

Π =

1 1 1 1 1 1
2 2 2 2 2 2
3 1 3 3 3 3
4 4 4 4 4 4
5 5 5 5 5 5
6 6 6 6 6 6

"
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$
$
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$
$
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$

%

&

'
'
'
'
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'
'

a(3, 2) = a(3,1)+ a(1, 2) then! →! Π(3, 2) =Π(1, 2)
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Distances Parents 
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D = D*: no change  
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=

D 
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Path: 
1-2-3 

a(1,3) = a(1, 2)+ a(2,3) then! →! Π(1,3) =Π(2,3)

Distances Parents 
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All-pairs	shortest-paths	problem	

480x 

Floyd-Warshall 
ported to GPU 

The right 
primitive  
(Matrix multiply) 

Naïve 
recursive 
implementation 

A.	Buluç,	J.	R.	Gilbert,	and	C.	Budak.	Solving	path	problems	on	the	GPU.	Parallel	
Compu/ng,	36(5-6):241	-	253,	2010. 		
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Wbc-2.5D(n, p) =O(n
2 cp )

Sbc-2.5D(p) =O cp log2(p)( )

Bandwidth: 

Latency: 

c: number of 
replicas 
Optimal for any 
memory size ! 

CommunicaNon-avoiding	APSP	in	distributed	memory	

c=1

  0

  200

  400

  600

  800

  1000

  1200

1 4 16 64 25
6

10
24 1 4 16 64 25
6

10
24

G
Fl

op
s

Number of compute nodes

n=4096

n=8192

c=16
c=4

E.	Solomonik,	A.	Buluç,	and	J.	Demmel.	Minimizing	communica/on	in	all-pairs	
shortest	paths.	In	Proceedings	of	the	IPDPS.	2013. 		

CommunicaNon-avoiding	APSP	in	distributed	memory	

•  Applica/ons	
•  Designing	parallel	graph	algorithms	
•  Case	studies:		

A.   Graph	traversals:	Breadth-first	search	
B.   Shortest	Paths:	Delta-stepping,	Floyd-Warshall	
C.   Maximal	Independent	Sets:	Luby’s	algorithm	
D.   Strongly	Connected	Components	
E.   Maximum	Cardinality	Matching	
	

Lecture	Outline	



3/17/16 

16 

Maximal	Independent	Set	

1 

8 7 
6 5 

4 3 

2 

•    Graph with vertices V = {1,2,…,n} 

•    A set S of vertices is independent if no 
    two vertices in S are neighbors. 

•    An independent set S is maximal if it is 
    impossible to add another vertex and 
    stay independent 

•    An independent set S is maximum  
    if no other independent set has more 
    vertices 

•    Finding a maximum independent set is 
    intractably difficult (NP-hard) 

•    Finding a maximal independent set is 
    easy, at least on one processor. 

  

The set of red vertices  
S = {4, 5} is independent 

and is maximal 
but not maximum 

SequenNal	Maximal	Independent	Set	Algorithm	

1 

8 7 
6 5 

4 3 

2 1.  S = empty set; 

2.  for  vertex v = 1 to n { 

3.      if (v has no neighbor in S) { 

4.          add v to S 

5.      } 

6.  } 

  

S = { } 

1 

8 7 
6 5 

4 3 

2 1.  S = empty set; 

2.  for  vertex v = 1 to n { 

3.      if (v has no neighbor in S) { 

4.          add v to S 

5.      } 

6.  } 

  

S = { 1 } 

SequenNal	Maximal	Independent	Set	Algorithm	

1 

8 7 
6 5 

4 3 

2 1.  S = empty set; 

2.  for  vertex v = 1 to n { 

3.      if (v has no neighbor in S) { 

4.          add v to S 

5.      } 

6.  } 

  

S = { 1, 5 } 

SequenNal	Maximal	Independent	Set	Algorithm	
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1 

8 7 
6 5 

4 3 

2 1.  S = empty set; 

2.  for  vertex v = 1 to n { 

3.      if (v has no neighbor in S) { 

4.          add v to S 

5.      } 

6.  } 

  

S = { 1, 5, 6 } 

work ~ O(n),  but  span ~O(n) 

SequenNal	Maximal	Independent	Set	Algorithm	 Parallel,	Randomized	MIS	Algorithm 

1 

8 7 
6 5 

4 3 

2 1.  S = empty set;  C = V; 

2.  while  C  is not empty { 

3.      label each v in C with a random r(v); 

4.      for all v in C in parallel { 

5.          if r(v) < min( r(neighbors of v) ) { 

6.              move v from C to S; 

7.              remove neighbors of v from C; 

8.          } 

9.      } 

10.  } 

  

S = { } 

C = { 1, 2, 3, 4, 5, 6, 7, 8 } 

M. Luby.  "A Simple Parallel Algorithm for the Maximal Independent Set 
Problem". SIAM Journal on Computing 15 (4): 1036–1053, 1986	

1 

8 7 
6 5 

4 3 

2 1.  S = empty set;  C = V; 

2.  while  C  is not empty { 

3.      label each v in C with a random r(v); 

4.      for all v in C in parallel { 

5.          if r(v) < min( r(neighbors of v) ) { 

6.              move v from C to S; 

7.              remove neighbors of v from C; 

8.          } 

9.      } 

10.  } 

  

S = { } 

C = { 1, 2, 3, 4, 5, 6, 7, 8 } 

Parallel,	Randomized	MIS	Algorithm 

1 

8 7 
6 5 

4 3 

2 1.  S = empty set;  C = V; 

2.  while  C  is not empty { 

3.      label each v in C with a random r(v); 

4.      for all v in C in parallel { 

5.          if r(v) < min( r(neighbors of v) ) { 

6.              move v from C to S; 

7.              remove neighbors of v from C; 

8.          } 

9.      } 

10.  } 

  

S = { } 

C = { 1, 2, 3, 4, 5, 6, 7, 8 } 

2.6 4.1 

5.9 3.1 

1.2 
5.8 

9.3 9.7 

Parallel,	Randomized	MIS	Algorithm 
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1 

8 7 
6 5 

4 3 

2 1.  S = empty set;  C = V; 

2.  while  C  is not empty { 

3.      label each v in C with a random r(v); 

4.      for all v in C in parallel { 

5.          if r(v) < min( r(neighbors of v) ) { 

6.              move v from C to S; 

7.              remove neighbors of v from C; 

8.          } 

9.      } 

10.  } 

  

S = { 1, 5 } 

C = { 6, 8 } 

2.6 4.1 

5.9 3.1 

1.2 
5.8 

9.3 9.7 

Parallel,	Randomized	MIS	Algorithm 

1 

8 7 
6 5 

4 3 

2 1.  S = empty set;  C = V; 

2.  while  C  is not empty { 

3.      label each v in C with a random r(v); 

4.      for all v in C in parallel { 

5.          if r(v) < min( r(neighbors of v) ) { 

6.              move v from C to S; 

7.              remove neighbors of v from C; 

8.          } 

9.      } 

10.  } 

  

S = { 1, 5 } 

C = { 6, 8 } 

2.7 

1.8 

Parallel,	Randomized	MIS	Algorithm 

1 

8 7 
6 5 

4 3 

2 1.  S = empty set;  C = V; 

2.  while  C  is not empty { 

3.      label each v in C with a random r(v); 

4.      for all v in C in parallel { 

5.          if r(v) < min( r(neighbors of v) ) { 

6.              move v from C to S; 

7.              remove neighbors of v from C; 

8.          } 

9.      } 

10.  } 

  

S = { 1, 5, 8 } 

C = { } 

2.7 

1.8 

Parallel,	Randomized	MIS	Algorithm 

1 

8 7 
6 5 

4 3 

2 1.  S = empty set;  C = V; 

2.  while  C  is not empty { 

3.      label each v in C with a random r(v); 

4.      for all v in C in parallel { 

5.          if r(v) < min( r(neighbors of v) ) { 

6.              move v from C to S; 

7.              remove neighbors of v from C; 

8.          } 

9.      } 

10.  } 

  

Theorem:  This algorithm 
“very probably” finishes 
within O(log n) rounds. 

work ~ O(n log n),  but  span ~O(log n) 

Parallel,	Randomized	MIS	Algorithm 
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•  Applica/ons	
•  Designing	parallel	graph	algorithms	
•  Case	studies:		

A.   Graph	traversals:	Breadth-first	search	
B.   Shortest	Paths:	Delta-stepping,	Floyd-Warshall	
C.   Maximal	Independent	Sets:	Luby’s	algorithm	
D.   Strongly	Connected	Components	
E.   Maximum	Cardinality	Matching	

Lecture	Outline	 Strongly connected components (SCC) 

•  Symmetric permutation to block triangular form 

•  Find P in linear time by depth-first search 

1 5 2 4 7 3 6 
1 

5 

2 

4 

7 

3 

6 

1 2 

3 

4 7 

6 

5 

Tarjan, R. E. (1972), "Depth-first search and linear graph algorithms", 
SIAM Journal on Computing 1 (2): 146–160	

Strongly	connected	components	of	directed	graph	
 
•  Sequential:  use depth-first search (Tarjan); 

work=O(m+n) for m=|E|, n=|V|. 
 
•  DFS seems to be inherently sequential. 

•  Parallel: divide-and-conquer and BFS (Fleischer 
et al.); worst-case span O(n) but good in practice 
on many graphs. 

L. Fleischer, B. Hendrickson, and A. Pınar. On identifying strongly connected components in 
parallel. Parallel and Distributed Processing, pages 505–511, 2000.	

Fleischer/Hendrickson/Pinar algorithm 

-  Partition the given graph into 
three disjoint subgraphs  

-  Each can be processed 
independently/recursively 

FW(v): vertices reachable from vertex v.  
BW(v): vertices from which v is reachable. 

Lemma: FW(v)∩ BW(v) is a 
unique SCC for any v. For every 
other SCC s, either "
(a) s ⊂ FW(v)\BW(v),"
(b) s ⊂ BW(v)\FW(v),"
(c)  s ⊂ V \ (FW(v)∪BW(v)). 



3/17/16 

20 

Improving FW/BW with parallel BFS 

Observation: Real world graphs have giant SCCs 

Finding FW(pivot) and BW(pivot) can 
dominate the running time with 
span=O(N) 

Solution: Use parallel BFS to limit 
span to diameter(SCC) 

S. Hong, N.C. Rodia, and K. Olukotun. On Fast Parallel Detection of Strongly Connected 
Components (SCC) in Small-World Graphs. Proc. Supercomputing, 2013	

- Remaining SCCs are very small; increasing span of the recursion. 
+ Find weakly-connected components and process them in parallel 

•  Applica/ons	
•  Designing	parallel	graph	algorithms	
•  Case	studies:		

A.   Graph	traversals:	Breadth-first	search	
B.   Shortest	Paths:	Delta-stepping,	Floyd-Warshall	
C.   Maximal	Independent	Sets:	Luby’s	algorithm	
D.   Strongly	Connected	Components	
E.   Maximum	Cardinality	Matching	

Lecture	Outline	

• Matching:	A	subset	M	of	edges	with	no	
common	end	ver/ces.		
–  |M|	=	Cardinality	of	the	matching	M	

x1 

x2 

x3 

y1 

y2 

y3 

Matched	vertex	

Unmatched	vertex	

Matched	edge	

Unmatched	edge	

x1 

x2 

x3 

y1 

y2 

y3 

Maximum	Cardinality	Matching	A	Matching	(Maximal	cardinality)	

Bipartite Graph Matching 

x1 

x2 

x3 

y1 

y2 

y3 

1.	Ini/al	matching	

x1 

x2 

x3 

y1 

y2 

y3 

3.	Increase	matching	by		
flipping	edges	in	the		
augmen/ng	path	

x3 

y3 

x2 

y1 y2 

2.	Search	for	augmen/ng	
path	from	x3.	stop	when	
an	unmatched	vertex	found		

Augmen/ng		
path	

Repeat	the	process	for	other	unmatched	ver/ces	

Single-Source Algorithm for Maximum 
Cardinality Matching 
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Multi-Source Algorithm for Maximum 
Cardinality Matching 

x1 

x2 

x3 

y1 

y2 

y3 

1.	Ini/al	matching	

x1 

x2 

x3 

y1 

y2 

y3 

3.	Increase	matching	by		
flipping	edges	in	the		
augmen/ng	paths	

Repeat	the	process	for	un/l	no	augmen/ng	path	is	found	

x3 

y3 

x2 

y1 y2 

2.	Search	for	vertex-disjoint		
augmen/ng	paths	from	x3	&	x1.	
	Grow	a	tree	un/l	an	unmatched		
vertex	is	found	in	it		

Augmen/ng		
paths	 x1 

y1 

Search	Forest	

LimitaNon	of	Current	MulN-source	Algorithms 

x1 

x2 

x3 

x4 

x5 

y1 

y2 

y3 

y4 

y5 

x6 y6 

(a)  A maximal matching 
      in a Bipartite Graph 

x1 x2 

x3 x4 x5 

y1 y2 y3 

y4 y5 

(b) Alternating BFS Forest 
Augment in forest 

Previous algorithms destroy both trees  
and start searching from x1 again 

x1 

x3 x4 

y1 y2 

x2 

y3 y4 

y6 

x6 

(c) Start BFS from x1 

Frontier 

Tree	Graking	Mechanism 

x1 

x2 

x3 

x4 

x5 

y1 

y2 

y3 

y4 

y5 

x6 y6 

(a)  A maximal matching 
      in a Bipartite Graph 

Active Tree Renewable Tree 

x1 x2 

x3 x4 x5 

y1 y2 y3 

y4 y5 

(b) Alternating BFS Forest 
Augment in forest 

x1 

x3 x4 

y1 y2 

Active Tree 

x2 

y3 

(c) Tree Grafting 

x1 

x3 x4 

y1 y2 

Active Tree 

x2 

y3 y4 

y6 

x6 

(d) Continue BFS 

Unvisited  
Vertices 

Ariful	Azad,	Aydin	Buluç,	and	Alex	Pothen.	A	parallel	tree	graqing	algorithm	for	maximum	cardinality	
matching	in	bipar/te	graphs.	In	Proceedings	of	the	IPDPS,	2015	

Parallel	Tree	Graking 

1.  Parallel	direc/on	op/mized	BFS	(Beamer	et	al.	SC	2012)	
–  Use	boDom-up	BFS	when	the	fron/er	is	large	

x1 x2 

x3 x4 x5 

y1 y2 y3 

y4 y5 

Maintain visited array 
 
To maintain vertex-disjoint  
paths, a vertex is visited  
only once in an iteration. 
 
Thread-safe atomics 

2.  Since	the	augmen/ng	paths	are	vertex	disjoint	we	can	
augment	them	in	parallel	

3.  Each	renewable	vertex	tries	to	aDach	itself	to	an	ac/ve	
vertex.	No	synchronizaNon	necessary	
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Performance	of	the	tree-graking	algorithm 

Pothen-Fan: Azad et al. IPDPS 2012 
Push-Relabel: Langguth et al. Parallel Computing 2014 
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1 5 2 3 4 6 7 8 9 10 11 
1 

2 

5 

3 

4 

7 

6 

10 

8 

9 

12 

11 

1 

2 

3 

5 

4 

7 

6 

9 

8 

11 

10 

HR 

SR 

VR 

HC 

SC 

VC 

Dulmage-Mendelsohn	decomposiNon 

Let M be a maximum-size matching.  Define: 

VR = { rows reachable via alt. path from some unmatched row } 

VC = { cols reachable via alt. path from some unmatched row } 

HR = { rows reachable via alt. path from some unmatched col } 

HC = { cols reachable via alt. path from some unmatched col } 

SR = R – VR – HR 

SC = C – VC – HC 

1.  Find a “perfect matching” in the bipartite graph of the matrix. 
2.  Permute the matrix to have a zero free diagonal. 
3.  Find the “strongly connected components” of the directed 

graph of the permuted matrix. 

Dulmage-Mendelsohn	decomposiNon 

•  Strongly connected components of directed graphs 

•  Connected components of undirected graphs 

•  Permutation to block triangular form for Ax=b 

•  Minimum-size vertex cover of bipartite graphs 

•  Extracting vertex separators from edge cuts  
for arbitrary graphs 

•  Nonzero structure prediction for sparse matrix 
factorizations 

ApplicaNons	of	D-M	decomposiNon 


