HPC on Python

Ramakrishnan Kannan, Shruti Shivakumar

Agenda

* Introduction

* HPC on Python

* Multiprocessing and joblib
* Numba and shared memory
* Numba and cupy

* MPI4PY

Programming Languages

* Interpreter
* Platform independence and easy scripting

* Compiler
* Compiler Optimizations

* Virtual Machines -- Javascript and Java
* Platform independence vs compilation

Python and performance challenges

* Interpreted — Most of the things are known during runtime
* Type free language

* Parallel Processing
e Global Interpreter Lock (GIL)

* Python Global Interpreter Lock or GIL, is a mutex (or a lock) that allows only one thread
to hold the control of the Python interpreter.

Multiprocessing

import multiprocessing

* multiprocessing.Pool() is the

] import time
number of processes to create In
def cube(x):
the pool. eturm x**3
* apply_async() function to pass i name ==" main_":
the arguments to the function pool = multiprocessing.Pool(3)
) start_time = time.perf_counter()
cube as list. processes = [pool.apply_async(cube, args=(x,)) for x in range(1,1000)]
result = [p.get() for p in processes]
* Asynchronous call and do not finish_time = time.perf_counter()

print(f"Program finished in {finish_time-start_time} seconds")
print(result)

wait for the function to finish

 get() waits for the task to finish
and retrieve the result.

joblib

* Simpler interface than multiprocessing
e Can be used for spawning multithreads

import time
from joblib import Parallel, delayed

def cube(x):
return x**3

start_time = time.perf_counter()

result = ParaIIeISn_jobs=3)(de|ayed(cube)(i) fori
in range(1,1000))

finish_time = time.perf _counter()

print(f"Program finished in {finish_time-
start_time} seconds")

print(result)

Numba - Motivation

foriin xrange(4096):
for j in xrange(4096):
for k in xrange(4096):

Clil[] += Ali][k] * BIK][]]

Table 1. Speedups from performance engineering a program that multiplies two 4096-by-4096 matrices. Each version represents a successive
refinement of the original Python code. “Running time" is the running time of the version. “GFLOPS” is the billions of 64-bit floating-point operations per
second that the version executes. “Absolute speedup” is time relative to Python, and “relative speedup,” which we show with an additional digit of precision,
is time relative to the preceding line. “Fraction of peak” is GFLOPS relative to the computer’'s peak 835 GFLOPS. See Methods for more details.

Version Implementation Running time (s) GFLOPS Absolute speedup Relative speedup ofF;Z(a::(::/o)
1 Python 25,552.48 0.005 1 — 0.00

- - /1S 1 - S | S 7 S
3 C 542.67 0.253 47 4.4 0.03

e e T oSl s L s B
g S e R T R T s
ok e A A g R D -
S R T R B o L e P

Leiserson, Charles E., Neil C. Thompson, Joel S. Emer, Bradley C. Kuszmaul, Butler W. Lampson, Daniel Sanchez, and Tao B. Schardl. "There’s plenty of room at the Top:
What will drive computer performance after Moore’s law?." Science 368, no. 6495 (2020): eaam9744.

Numba: A JIT Compiler for Python

* An open-source, function-at-a-time compiler library for Python
* Compiler toolbox for different targets and execution models:

* Single-threaded CPU, multi-threaded CPU, GPU — (Openmp and
CUDA)

 regular functions, “universal functions” (array functions), etc
* Combine ease of writing Python with speeds of Native code

* Opensource - BSD licensed (including GPU compiler) --
https://github.com/numba/numba

* Goal is to empower scientists who make tools for themselves and
other scientists

@jt

Numba .

>>> do_math(,)
I

\4
Python Function Functions
(bytecode) Arguments
v mfgé’ﬁce —p! Rewrite IR
i’ﬁ:ﬁ,os?se —p Numba IR *
Lowering

v

Execute! — M(a:cozgige < LLUMNVWMJIT |[€— LLVMIR

Floating Point Operations Roofline

10 Single Precision Roofline

Peak Work: 13,440,416,053,826.78
Peak Traffic: 898,801,490,047.54
Arithmetic Intensity [FLOP/byte]: 14.95
Double Precision Roofline
_________________ m Performance [FLOP/s]: 13,440,416,053,826.78
1 Peak Work: 6,720,208,026,913.39
______ Peak Traffic: 898,801,490,047.54 /
Arithmetic Intensity [FLOP/byte]: 7.48 ~
Performance [FLOP/s]: 6,720,208,026,913.39

O D Double Precision Achieved Value

Performance [FLOP/s]
(1=1E+13)

0.1
Arithmetic Intensity [FLOP/byte]: 8.87
Performance [FLOP/s]: 1,496,377,066,200.64
1 10 100 1,000

Arithmetic Intensity [FLOP/byte]

10,00(C

