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Dielectric Waveguide Mode Solver

◼ Goal: Find solution to Maxwell’s equations for a given geometry

 Iterative eigenvalue problem with sparse matrices

◼ Current challenges:

Finding eigenvalues and eigenvectors is an expensive calculation

 Limited to smaller structures at lower resolutions

Speed-up can enable:

◼ faster device design and optimizations

◼ higher resolution calculations (more accurate)

◼ Existing work:

A GPU Solver for Sparse Generalized Eigenvalue Problems With 

Symmetric Complex-Valued Matrices Obtained Using Higher-Order 

FEM: https://ieeexplore.ieee.org/iel7/6287639/8274985/08468163.pdf

This work uses the finite-element method (FEM), which isn't scalable 

to larger geometries. We will use the finite-difference method (FD)

2

𝜇−1∇ × 𝜖−1∇ × 𝐇 = 𝜔2𝐇

https://ieeexplore.ieee.org/iel7/6287639/8274985/08468163.pdf

https://ieeexplore.ieee.org/iel7/6287639/8274985/08468163.pdf
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Mode Solver Problem Breakdown

3

(1) Define your geometry

(2) Create the maxwell operator matrix 𝑨
sparse matrix

𝜇−1∇ × 𝜖−1∇ × 𝐇 = 𝜔2𝐇

(3) Solve eigenpair problem
This is where HPC comes into play

(4) Compute the other mode fields

𝑨 =

A. B. Fallahkhair, K. S. Li and T. E. Murphy, "Vector Finite Difference Modesolver for Anisotropic Dielectric Waveguides", J. Lightw ave Technol. 26(11), 1423-1431, (2008).
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Performance Metrics

Accuracy Metrics
◼ Eigenvalue error vs. resolution

Ensure eigenvalues converge to correct 

value from baseline

◼ Visual normalized mode-field accuracy

Should also converge to baseline with 

higher resolution

4

Timing Metrics
◼ Total time at a given resolution

◼ Time per task

Task 1: Build matrix A

Task 2: Solve eigenpair problem

Task 3: Compute other mode fields

◼ Total time vs. resolution

Subsequently calculate GPU speed-up
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Baseline Testing

◼ EmPy: Open-source, Python-based, fully vectorial finite difference mode solver

 Implements algorithm found in "Vector Finite Difference Modesolver for Anisotropic Dielectric Waveguides”

Uses scipy.sparse.linalg.eigs, a wrapper to the ARPACK SNEUPD, DNEUPD, CNEUPD, ZNEUPD, functions 

which use the Implicitly Restarted Arnoldi Method to compute eigenvalues and eigenvectors

Sparse matrices stored in compressed sparse row (CSR) format

◼ Test case: Standard silicon rectangular waveguide

Resolution: 512 pixels

Spatial Pixel Size: 4nm/pixel

Eigenvector Matrix Size: 512 x 512 (262,144 elements)

5

Rectangular Waveguide

Si

SiO2

2.048 𝜇m

2.048 𝜇m

200 nm

100 

nm
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Baseline Testing: Accuracy

6

𝑯𝒙 𝑯𝒚

Mode Fields
(Eigenvectors)

𝒏𝒆𝒇𝒇 Convergence
(Eigenvalue)

𝑛𝑒𝑓𝑓 =
𝜆 𝛽

2𝜋
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Baseline Testing: Timing

7

Total Computation Time
(at resolution 512)

Total Computation Time vs. Resolution
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Baseline Testing: Timing

8

Total Computation Time
(at resolution 512)

Computation Time by Code Section
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Solution: GPU Accelerated Mode Solver

◼Goal: Accelerate a presently implemented mode solver on a GPU

◼Design:

Start with existing solution (serial), open-source such as EmPy

Convert the eigenmode problem to be GPU compatible

◼ Choose an appropriate algorithm: Arnoldi iteration and QR Algorithm

Validate accuracy and determine GPU speed-up

◼Challenges we faced:

The matrices we're working with are very large (dimensions up to 500,000) which makes it difficult 

to apply simpler algorithms. Everything must work be tailored to sparse matrices (copies, 

computation, etc.)

The sped-up version isn't always as accurate as the serial version. Balancing speed with accuracy 

is an important trade-off

9
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How do we solve an eigenvalue problem?

◼ Many methods!

◼ Which one do we want? 

Dependent on matrix form and which eigenvalues you need

10

Iterative Eigenvalue Algorithms
Power Iteration

Rayleigh Quotient Iteration

Inverse Iteration

Preconditioned Inverse Iteration

Bisection Method
Laguerre Iteration

QR Algorithm

Jacobi Eigenvalue Algorithm

Divide-and-conquer

Homotopy Method
Folded Spectrum Method

MRRR Algorithm
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How do we solve an eigenvalue problem?

◼ Many methods!

◼ Which one do we want? 

Dependent on matrix form and which eigenvalues you need
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Iterative Eigenvalue Algorithms
Power Iteration

Rayleigh Quotient Iteration

Inverse Iteration

Preconditioned Inverse Iteration
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Laguerre Iteration
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QR Algorithm

◼ Iterative method based on the 𝑄𝑅 decomposition, which factors a matrix 𝐴 into the product of two 

matrices 𝑄 and 𝑅

𝑄 is orthonormal (with the property that 𝑄𝑇 = 𝑄−1) and 𝑅 is upper triangular

◼ The iteration is straightforward:

All 𝐴𝑘  are similar and so share the same eigenvalues. Proof: 𝐴𝑘 +1 = 𝑅𝑘𝑄𝑘 = 𝑄𝑘
−1𝑄𝑘𝑅𝑘 𝑄𝑘 = 𝑄𝑘

−1𝐴𝑘 𝑄𝑘 = 𝑄𝑘
𝑇𝐴𝑘 𝑄𝑘 .

𝐴𝑘 → 𝑈, an upper triangular matrix called the Schur form of 𝐴, whose diagonal entries are the eigenvalues of 𝐴.

◼ To compute the associated eigenvectors, we simultaneously apply this iteration:

 𝑆𝑘 → 𝑆, a matrix whose columns contain the orthonormal eigenvector basis of 𝐴

12
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Addressing Sparsity

◼ Goal: Convert a large, sparse matrix 𝐴 to small, dense matrix 𝐻 (“condensed form”), where the 

eigenvalues of 𝐻 are a subset of the (approximate) eigenvalues of 𝐴

The QR Algorithm as described has complexity 𝑂(𝑛4), making it impractical for our input sizes

We will show that first forming 𝐻 and then applying the QR Algorithm to 𝐻 is much less expensive

◼ Method: Arnoldi Iteration

Projects 𝐴 onto a subspace of the original vector space, producing the desired matrix 𝐻

More precisely, this algorithm produces a sequence of orthonormal vectors (called Arnoldi vectors) that span the 

order-𝑟 Krylov subspace 𝐾𝑟 (𝐴, 𝑏). 𝐻 can be interpreted as the representation in the basis of Arnoldi vectors of the 

orthogonal projection of 𝐴 onto 𝐾𝑟 (𝐴, 𝑏)

◼ Benefit: Avoids expensive matrix-matrix operations

 Instead, we rely on a series of matrix-vector operations

The algorithm uses the modified Gram-Schmidt procedure, a method of orthonormalizing a set of vectors in an 

inner product space

We choose 𝑟 empirically, but we always have that 𝑟 ≪ 𝑛, and so the QR complexity becomes 𝑂 𝑟3  (we also lose 

a factor of 𝑟 because of the special form of 𝐻) 13
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◼ Produces an upper Hessenberg matrix 𝐻 and an 

orthonormal matrix 𝑄𝑛 (containing the Arnoldi 

vectors) such that 𝐴 = 𝑄𝑛𝐻𝑛𝑄𝑛
∗

A matrix is upper Hessenberg if it is square and has 

zero entries below the first subdiagonal:

◼ The eigenvalues of 𝐻 are called the Ritz 

eigenvalues, and they typically converge to the 

largest eigenvalues of 𝐴 first

14

Upper 

Hessenberg 
Structure

Arnoldi Iteration

Arnoldi Iteration
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◼ An eigenvector of A can be formed by multiplying:

𝑄𝑛  (from the Arnoldi iteration)

An eigenvector 𝑣 of 𝐻𝑛  (computed from the QR algorithm)

◼ Proof:

Eigenvectors from Arnoldi Iteration

15

      𝐻𝑛𝑣 =  𝜆𝑣  (𝑣 is an eigenvector)

    𝐻𝑛𝑄𝑛
∗ 𝑄𝑛𝑣 =  𝜆𝑣  (insert 𝑄𝑛

∗ 𝑄𝑛 = 1) 

𝑄𝑛𝐻𝑛𝑄𝑛
∗ 𝑄𝑛𝑣 =  𝜆𝑄𝑛𝑣 (left multiply by 𝑄𝑛) 

 A𝑄𝑛𝑣 =  𝜆𝑄𝑛𝑣 (𝐴 = 𝑄𝑛𝐻𝑛𝑄𝑛
∗ )

 A(𝑄𝑛𝑣) =  𝜆(𝑄𝑛𝑣) (𝑄𝑛𝑣 is an eigenvector of 𝐴)
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Parallelization: CuPy

◼ Drop-in replacement to run existing NumPy/SciPy 

code using NVIDIA CUDA

◼ Access to low-level CUDA features straight from 

Python, making it ideal for extending EmPy

◼Utilizes CUDA Toolkit libraries including cuBLAS, 

cuRAND, cuSOLVER, cuSPARSE, cuFFT, cuDNN 

and NCCL to make full use of the GPU architecture

◼These libraries include routines for the matrix 

operations we employ (e.g. QR decomposition) on 
sparse matrices

16
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Datasets / Testbed

◼ Dataset: Standard silicon rectangular waveguide

Resolutions scaled from 32 to 512 (by factors of 2)

◼ Test Bed:

PACE Cluster (coc-ice-gpu)

Tesla v100 GPU

Conda environment enabled with development version of EmPy 17

Rectangular Waveguide Structure of Generated A

Si

SiO2

Resolution: 512

Spatial Pixel Size: 4nm/pixel
Eigenvector Matrix Size: 512 x 512 (262,144 elements)

2.048 𝜇m

2.048 𝜇m

Matrix Size: ~5 ⋅ 105 × 5 ⋅ 105

Number of nonzeros (nnz): ~107

Sparsity: ~0.003 %

Matrix Sparsity

200 nm

100 

nm
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Validation Testing: Accuracy

18

𝑯𝒙 𝑯𝒚

Mode Fields
(Eigenvectors)

𝒏𝒆𝒇𝒇 Convergence
(Eigenvalue)

𝑛𝑒𝑓𝑓 =
𝜆 𝛽

2𝜋

𝑯𝒙 𝑯𝒚

CPU
(baseline)

CPU + GPU
(validation)
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Performance Testing: Timing

19

Total Computation Time
(at resolution 512)

Total Computation Time vs. Resolution
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Performance Testing: Timing

20

Total Computation Time
(at resolution 512)

Computation Time by Code Section
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Conclusion and Future Work

◼ Implemented a GPU-accelerated eigenmode solver

Utilized Arnoldi iteration for sparse matrices

Completed QR iteration to converge eigenvalues and eigenvectors simultaneously

GPU-accelerated implementation enabled by CuPy

At a resolution of 512, observed a speedup of 18.8x

◼ Challenges

Our implementation was faster at higher resolutions, but less accurate

◼ Requires more sophisticated eigensolver algorithm

 Large noise present in the eigenvectors

◼ Likely due to initialized vector for linear solve in Arnoldi iteration

◼ Causes denser eigenvectors and longer computation time for Task 3: compute other fields

◼ Attempted to optimize by initializing with ones, created artifacts in other parts of the eigenvector

◼ Future Work

 Implement more robust eigenvalue solver using implicitly restarted Arnoldi iteration and a QR algorithm using 

shifts and deflation

Cohesively include our work in open-source library EmPy
21
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Project Category & Problem Definition
• Category: Scientific Application & 

Reproducibility 
• Problem Definition:

• Density Functional Theory (DFT) is 
used to investigate properties of 
molecular systems. 
• DFT relies on solving the Kohn-

Sham equations, which require 
computationally expensive 
orthogonalization of large 
matrices. 
• Proxy apps can be used to reduce 

development workload and yet 
draw conclusions on code 
performance on heterogeneous 
architectures.

https://en.wikipedia.org/wiki/Density_functional_theory#/media/File:C60_isosurface.png



What are proxy apps? 
• Proxy apps reduce the problem to essential 

components to understand performance-
critical aspects of an algorithm. 
• In this work, we will employ the Löwdin 

orthonormalization of a tall-skinny matrix
as a proxy app for solving the KS equations. 
• Other possible proxy-apps: 

https://proxyapps.exascaleproject.org/app/



Procedure for Solving Kohn-Sham Equations

1. Compute the Gram 
matrix 𝑆 = 𝐴!𝐴

2. Compute 𝐶 = 𝑆"/$

3. Update A: 𝐴%&' = 𝐴𝐶

Majid, M.F.; Mohd Zaid, H.F.; Kait, C.F.; Ahmad, A.; Jumbri, K. Ionic Liquid@Metal-Organic Framework as a Solid Electrolyte in a Lithium-Ion 
Battery: Current Performance and Perspective at Molecular Level. Nanomaterials 2022, 12, 1076. https://doi.org/10.3390/nano12071076



Goals
1. Reproduce and benchmark 

method from [1] on GT clusters
2. Introduce and benchmark mixed 

precision scheme

[1] M. Lupo Pasini, B. Turcksin, W. Ge, and J.-L. Fattebert, “A parallel strategy for density functional theory 
computations on accelerated nodes,” Parallel Computing, vol. 100, p. 102703, Dec. 2020, doi: 
10.1016/j.parco.2020.102703.

Strong scaling benchmark method [1]



Datasets & Obtained Performance Metrics
• INPUTS: 

1. Testbeds
• Hive
• COC ICE
• ICE HAMMER

2. Matrix Sizes
• Tall Skinny Matrices

• 3,000,000 x 300
• 3,000,000 x 3,000 did not fit into 

memory on our Hive test bed
• N X N Square Matrices

• N = 1092, 2096, 3140, 4146, 5156, 
6210, 7210, 8256, 9260, 10304

3. Gaussian Wavefunctions 
standard deviations, 𝜎
• 𝜎 = 0.25, 0.5, 0.8

• METRICS: 
1. Time breakdown 

• Total
• AllReduce
• Host to Device (H to D)
• Memory Initialization (Mem Init)
• Schulz Iterations
• 𝐴!𝐴

2. No. of Iterations to Convergence



Validation – Tests
• Main program broken down into 9 tests: 

ütestAllreduce
ütestMAGMA
ütestMatMul
ütestMaxNormReplicated
ütestMPI
ütestOrtho
ütestSchulz
ütestSchulzSingle







Solution – Matrix Size

[1] M. Lupo Pasini, B. Turcksin, W. Ge, and J.-L. Fattebert, “A parallel strategy for density functional theory computations 
on accelerated nodes,” Parallel Computing, vol. 100, p. 102703, Dec. 2020, doi: 10.1016/j.parco.2020.102703.

• Computing the inverse square root of a 
matrix through diagonalization (blue) on a 
GPU 

𝑺"
𝟏
𝟐 = 𝑉𝐷"

%
&𝑉!

is inefficient and memory-bound on a GPU. 

• The Schulz iterative method (orange) 
parallelizes much more efficiently, 

𝑌'(% = 0.5𝑌' 3𝐼 − 𝑍'𝑌'
𝑍'(% = 0.5 3𝐼 − 𝑍'𝑌' 𝑍'

where 𝑌' → 𝑆
!
" and 𝑍' → 𝑺"

𝟏
𝟐 as 𝑘 → ∞.

𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚
𝑀𝑎𝑡𝑚𝑢𝑙



• Investigated number of Schulz 
iterations needed to restore 
orthogonality of columns of A matrix

• Case: tall-skinny, 300,000 X 3000 
matrix with standard deviations of 
𝜎 = 0.25, 0.5, 0.8

• Relative departure from orthogonality 
defined as 

𝐷𝐴!𝐴𝐷 − 𝐼
𝐷𝐴!𝐴𝐷

where 𝐷!! = 𝑆!!
"!" is diagonal scaling 

matrix. 

Solution – Convergence of Schulz Iteration



Solution – Strong Scaling (Hive vs. Summit)
• We plan to reproduce strong scaling tests from Summit on Hive and 

ICEHAMMER
§ Currently the benchmark is not making use of multiple GPUs when MPI is 

managed by SLURM (the scheduler on both Hive and ICEHAMMER)

• We plan to address this issue and reproduce strong scaling tests for:
§ Hive: 1, 2, 4 x Tesla V100s
§ ICEHAMMER: 1, 2, 4, 8, 16 x Tesla A100s
§ COC-ICE: 1, 2, 4, 8, 16 x Tesla V100s



Solution – Time Breakdown at one case
• Runtime breakdown of Schulz 

iterative method on 3,000,000 
x 300 tall skinny matrix
• These timing results were 

obtained with a two MPI tasks
• Each MPI task:
• 1 process
• One V100 GPU



Solution – Strong Scaling
• Currently the program is not 

taking advantage of additional 
MPI tasks and GPUs when 
SLURM manages MPI on 
ICEHAMMER
• Hive can only request up to 4 

GPUs per job, so each MPI Task 
has a single V100 GPU and one 
process
• We are working to address 

issues on COC-ICE and 
ICEHAMMER for accurate strong 
scaling test results



Challenges
• Building Magma (GPU Numerical Linear Algebra Library)

• The build scripts contained a bug that produced an incomplete pkgconfig file
• We had to manually modify the autogenerated magma.pc to add the library's 

include directories and cflags
• Building ParrLO

• We had never used pkgconfig before, so we initially made manual 
modifications to the CMakeLists.txt to include and link against Magma
• We later figured out that we could prepend our $PKG_CONFIG_PATH var with 

the magma.pc file which simplified the build process
• We encountered errors linking against the version of boost available on PACE, 

which we were able to fix by manually specifying the missing libraries with 
linker flags and modifying our CMakeLists.txt to set the CXX ABI to the old 
C++98 standard for compatibility

• With these changes we were able to get most tests running



Ongoing Challenges
• Most tests running on PACE, HIVE, and ICEHAMMER

• Schulz Iteration, MPI, Orthonormalization, Replicated MaxNorm, MAGMA
• MatMul test and main benchmark fail on PACE and ICEHAMMER

• We suspect it may have something to do with CUDA-aware MPI
• Several parts of the program return invalid pointer errors on freeing memory

• We do not have sufficient resources to run the full benchmark on HIVE
• The paper's benchmark matrix is 3,000,000 x 3,000 = ~72GB at double 

precision
• With only 4 x 16GB Tesla V100 GPUs on HIVE, we must reduce the matrix size 

to run the program
• We hope to get the full-sized project running on ICEHAMMER where we have 

access to 16 x 80GB Tesla A100 GPUs



Future Work – Mixed Precision
• Magma single, half, & double 

precision APIs for BLAS 
operations 
• magma_sgemm
• magma_hgemm
• magma_dgemm

• We plan to modify the 
benchmark with these and 
investigate the impact on 
communication time and 
convergence
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Category
● Application

○ In detail, our focus is on developing a practical solution to 
accelerate tensor computation

3



Problem
● Tensor computation

○ Widely used in neural networks
○ E.g., GEMM, Convolution2D, Convolution1D…
○ Computationally expensive and time-consuming, particularly on ARM CPUs

4



Problem
● Machine learning library

○ Example
■ PyTorch, Tensorflow

○ Advantages
■ High performance
■ User friendly APIs

○ Challenges
■ Contributed by experts only
■ Long and complex handwritten 

kernels
■ Limited number of operators

5

● Code generation technology
○ Main idea

■ User-defined computation
■ User-defined or auto optimization

○ Advantages
■ Highly customizable operators
■ Convenient for optimization and 

tuning
○ Challenges

■ Worse performance than libraries



Problem

● Goal
○ Accelerate tensor computation on ARM CPUs
○ Leverage CodeGen and SIMD technology
○ Demonstrate how to implement customized operators
○ Achieve reasonable performance

6



Performance Metrics
• Runtime for data of different of size

• Evaluate different tensor operations

7



Baselines
• PyTorch
• Ansor
• TensorFlow
• AutoTVM
• …

8



Solution - Workflow

9



TVM
Solution - CodeGen

• A Python interface end-to-end compiler framework for CPU, GPU, 
and accelerators

• Seperate computation and optimization
○ Define computation

■ C = sum(A[i,k]*B[k,j], reduce=k)

○ Define schedule primitive
■ io, ii = split(i, factor=8)
■ reorder(io, jo, ko, ki, ii, ji)

10



Solution - CodeGen (GEMM as example)

11

● Define computation
○ C = sum(A[b,i,k]*B[b,k,j], reduce=k)

● Define schedule
○ Cache read

A_local = sch.cache_read(A, "local", C)
○ Split axes

cfg.define_split("tile_i", i, num_outputs=4)
i1, i2, i3, i4 = cfg["tile_i"].apply(s, O_pad, i)

○ Reorder axes
sch[C].reorder(b,i1,j1,...)

○ Parallel
sch[C].parallel(sch[C].fuse(b,i1,j1))



Solution - CodeGen

12

● Factor autotuning
○ Define configs when splitting axes
○ Apply autotvm.tuner.GATuner as the tuner

■ This tuner applys genetic algorithm
■ Tune for multiple trials
■ Early stop when no better schedule found in several trials

○ Apply best schedule

task = autotvm.task.create("gemm", args, target)
measure_option = autotvm.measure_option(LocalBuilder, LocalRunner)
tuner = autotvm.tuner.GATuner(task)
tuner.tune(n_trials, early_stopping)
with autotvm.apply_history_best("gemm.log"):

func = tvm.build(s, args)



NEON SIMD Instructions
Solution - SIMD

• NEON is a technology that enables parallel processing 
on ARM CPUs.

• Vectorization: processing multiple elements of the 
tensors at the same time

• Low-Level Optimization: loop unrolling and memory 
alignment to maximize the performance

13



Solution - SIMD

14

● Apply NEON intrinsics
○ Vector load

■ vld1q_f32
○ FMA

■ vfmaq_n_f32
○ Vector store

■ vst1q_f32

● Compile with LLVM
ll_code = clang.create_llvm(c_code, options=["-O2", ], cc="clang")



Solution - Tensorize and Generate binary

• Use tensorize to combine TVM Python and NEON C code
○ sch[C].tensorize(intrin_micro_kernel())

sch[C].pragma("import_llvm", gemm_kernel())
• Generate binary

○ gemm = tvm.build(sch, arg_bufs)

15



We use the calculation result of PyTorch as the ground truth.

Validation

16



● Different operators
○ GEMM
○ Convolution 2D
○ Convolution 1D

● Different tensor sizes
○ Refer to sizes in Transformer, U-nets

● Generate tensors randomly

Datasets

17



We optimize on common ARM CPUs for consumers.

Platforms

18

● Apple Silicon
○ M2 chip, Avalanche
○ 8-Core CPU
○ 16 GB Unified Memory



Plots

19
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Problem Introduction

Lots of applications calls for simulation frameworks 
about large-scale particle systems!

• Astronomy: 
Gravity simulations for galaxy systems.

• Chemistry & Biochemistry: 
Molecular dynamics

• Electro-Dynamics:
Multiple particles moving 

under electromagnetic fields (Accelerator, Tokamak)
• Fluid-Dynamics:

Smoothed Particle Hydrodynamics
• Many others...



Problem Abstraction

A set of particles 𝐩 ∈ 𝛀.
For each particle 𝒑, it has the position(assume in 3d) 𝒓, velocity 𝒗, and some other attributes 𝒔 (for example, 
massive, charge, temperature, box volume, etc.)

𝒑 = 𝒓, 𝒗, 𝒔 , 𝒓 = 𝑥, 𝑦, 𝑧 , 𝒗 = 𝑣! , 𝑣" , 𝑣# , 𝒔 = (𝑚, 𝑞, … )
Between each particles, there is some interactions, for example, gravity, Coulomb, Van der waals force.

𝑓 𝒑$, 𝒑% ⋯𝑓 𝒑$, 𝒑&
⋮ ⋯ ⋮

𝑓 𝒑& , 𝒑$ ⋯𝑓(𝒑& , 𝒑&)
These interactions to one particle can be merged:

𝑓 𝒑𝒌, 𝛀 =7
(

𝑓(𝒑& , 𝒑()

And the interactions will affect the position of each particles along the time under certain timestep Δ𝑡:

𝒗𝒌 𝑡 + Δ𝑡 = 𝒗& 𝑡 +
𝑓(𝒑& , 𝛀)

𝑚
Δ𝑡

𝒓𝒌 𝑡 + ∆𝑡 = 2𝒓& 𝑡 − 𝒓& 𝑡 − ∆𝑡 + )(𝒑!,𝛀)
/

∆𝑡%

For particle dynamic systems, we have:



Solution I: MPI & OpenMP
For N particles, each particles would be interactive to other N-1 particles, which 
build up a NxN matrix of interactions.

In our implementation
• We implement a 

OpenMP based 
program for each 
node,

• Then we use MPI to 
dispatch workloads 
across nodes.



Solution I: MPI & OpenMP

To implemented the distributed computing, here 
we have the parallel strategy as follows:

1. Shadowing all particles in X and Y edges,
2. Scatter all particles to edge nodes,
3. Broadcast from the edge nodes to inner 

nodes,
4. Calculate accelerations at each node (locally)
5. Allreduce accelerations across 

cols/rows(globally)
6. Update velocity && position at edge nodes(in 

one direction)
7. Gather and Re-scatter particles to all edge 

nodes(in the other direction)

MPI Implementation: Dense Scheduler



Solution I: MPI & OpenMP
MPI Implementation: Cutoff Scheduler
In real problems, the interaction between particles might 
decay rapidly:
• Van der Waals forces: 𝑓 = 𝐴𝑟0$% − 𝐵𝑟01

Which makes it possible to speed-up the calculation by 
using cutoff approximation, which assume:
• Interaction beyond a certain range can be ignored.

Based on the assumption, we have:
• Sort particles before scattering.
• For each node, it only compute interaction between 

same sets of particles.
• To avoid the approximation error, setup a slightly large 

neighbor zone which can only be observer, but not 
calculate the accelerations.

• The computation complexity shrinks from N^2 to N
• Also, the communication is greatly reduced.



Solution I: MPI & OpenMP
MPI Implementation: “Centroid” Scheduler
For some interactions, the cut-off assumption is wrong, for example:
• Gravity: Sun has a long distant from us, however, we and the earth feel the gravity from 

sun.

For these kind of interactions, we approximate the distant particles with their “centroid”, 
instead of force cut-off.



Naive Implementation: Two nested for-loop
--> costs much more time! (around 50x OpenMP)

Improvement: lift computational intensity with shared memory
• N = # of particles = # of threads;

• One kernel call for each timestep;

For each kernel call: 
• Load corresponding block of particles to share memory once;

• Iteratively load other blocks of particles to share memory;

• Compute interaction (acceleration) for each pair;

• Reduce to update the responsible particle;

• No need to physically allocate the 𝑛×𝑛 matrix.

Result: Much faster than that of OpenMP! (around 1/60)

Solution II: CUDA



Performance Metric, Baselines, Validation, Datasets & Testbed

Validations:
1. (Main method) Parallel version result == sequential version result. (Will show in demo)
2. (Optional) Intuitive visualization

Animation on JavaScript: Visualization (Refer to [1])

Datasets: Randomly distributed initial position, velocity and mass
Testbed:

OpenMP and MPI solution: coc-ice-multi, 16 nodes, 8 processes per node;
CUDA solution: coc-ice-gpu, 1 Tesla V100 GPU, 1 node

[1] https://hunar4321.github.io/particle-life/particle_life_3d.html

Performance Metric:
1. Time (Strong Scaling Plot, Run-time Breakdown, Roofline Model); 
2. Memory (Complexity Analysis)

Baseline: Sequential version of our algorithm



Plots for MPI Solution

--- : Ideal Scaling --- : Ideal Scaling--- : Ideal Scaling



Plots for CUDA Solution

Compute Time = 77526 ms (n=2^17)



Proposed Future Work

• Experiment on cut-off implementation;

• Combine MPI + CUDA and compare performance;

• Use software to measure program memory usage;

• Develop solution for multiple types of interaction forces;

• Try OOP so that user can easily define their own particle;

• The CUDA kernel optimization strongly related to the interaction rule.



Summary

• Category: Application

• Problem: Develop a parallel framework for the general particle dynamics problem

• Performance Metric: Time (strong scaling, time breakdown, roofline model); Memory 

(theoretical analysis)

• Baseline: Sequential version of our solution

• Solution: (1) MPI version; (2) CUDA version

• Validation: Same input, same output; intuitive visualization

• Datasets: Randomly generated particles (w.r.t. position, velocity, acceleration, mass)

• Test bed: PACE (coc-ice-multi & coc-ice-gpu)

• Plots: (1) Strong Scaling for MPI; (2) Time breakdown for CUDA; (3) Roofline Model for CUDA



Q&A

Georgia Institute of Technology

April 2023

Yu Du
yudu@gatech.edu

Qiang Wu
qwu350@gatech.edu

Changhai Man
cman8@gatech.edu


	Slide 1
	Slide 2: Dielectric Waveguide Mode Solver
	Slide 3: Mode Solver Problem Breakdown
	Slide 4: Performance Metrics
	Slide 5: Baseline Testing
	Slide 6: Baseline Testing: Accuracy
	Slide 7: Baseline Testing: Timing
	Slide 8: Baseline Testing: Timing
	Slide 9: Solution: GPU Accelerated Mode Solver
	Slide 10: How do we solve an eigenvalue problem?
	Slide 11: How do we solve an eigenvalue problem?
	Slide 12: QR Algorithm
	Slide 13: Addressing Sparsity
	Slide 14
	Slide 15
	Slide 16: Parallelization: CuPy
	Slide 17: Datasets / Testbed
	Slide 18: Validation Testing: Accuracy
	Slide 19: Performance Testing: Timing
	Slide 20: Performance Testing: Timing
	Slide 21: Conclusion and Future Work

