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Introduction
• Discrete Wavelet Transform (DWT) is a powerful mathematical tool in signal

processing and multiresolution analysis
• It is a generalization of the Fast Fourier Transform that allows capturing global and

local features of the input data

Widely used 1D mother wavelets Multi-level 2-D DWT



Motivation

• Diverse applications:
• Image compression and denoising
• Gravitational wave detection and analysis
• EEG & ECG signal analysis
• Feature extraction for ML
• Multiresolution analysis of financial signals
• Seismic data analysis, earthquake prediction

• Improvements in time to solution would benefit processing large images.
Ex. James Webb Space Telescope generates 12.6GB of raw image data/hour.



Problem: Multi-level 2-D DWT

Original Image Decomposition Level 1 Decomposition Level 2 Decomposition Level 3

• Multi-level 2-D DWT is recursive
• At each level, image gets decomposed into low and high frequency bands

o LL: Approximate
o HL: Vertical

o LH: Horizontal

o HH: Diagonal



2-D Haar Row-Column DWT

Original Image (I) Row-wise 1-D DWT (R) Column-wise 1-D DWT (C)

L H

n x n

LL1 HL1

HH1LH1

for i in [0, n):

for j in [0, n/2):

L = I(i, 2j) + I(i, 2j + 1)
!

H = I(i, 2j) − I(i, 2j + 1)
!

for j in [0, n):

for i in [0, n/2):

L{L, H} = R(2i, j) + R(2i + 1, j)
!

{L, H}H = R(2i, j) − R(2i + 1, j)
!



2-D Haar Row-Column DWT

Original Image (I) Row-wise 1-D DWT (R) Column-wise 1-D DWT (C)

L H

LL1 HL1

HH1LH1

for i in [0, n):

for j in [0, n/2):

L = I(i, 2j) + I(i, 2j + 1)
!

H = I(i, 2j) − I(i, 2j + 1)
!

n x n
for j in [0, n):

for i in [0, n/2):

L{L, H} = R(2i, j) + R(2i + 1, j)
!

{L, H}H = R(2i, j) − R(2i + 1, j)
!

Issues?

Column-wise transform is 
expensive for row-major 
layout of image in memory



Transposition

Original Image (I) Row-wise 1-D DWT (R) Row-wise 1-D DWT (C)

L

H

LL1 HL1

HH1LH1

for i in [0, n):

for j in [0, n/2):

L = I(i, 2j) + I(i, 2j + 1)
!

H = I(i, 2j) − I(i, 2j + 1)
!

n x n
for i in [0, n):

for j in [0, n/2):

L{L, H} = R(i, 2j) + R(i, 2j + 1)
!

{L, H}H = R(i, 2j) − R(i, 2j + 1)
!

Solution I:

Replace column-wise transform 
with row-wise transform via 
transposition



Transposition

Original Image (I) Row-wise 1-D DWT (R) Row-wise 1-D DWT (C)

L

H

LL1 HL1

HH1LH1

for i in [0, n):

for j in [0, n/2):

L = I(i, 2j) + I(i, 2j + 1)
!

H = I(i, 2j) − I(i, 2j + 1)
!

n x n
for i in [0, n):

for j in [0, n/2):

L{L, H} = R(i, 2j) + R(i, 2j + 1)
!

{L, H}H = R(i, 2j) − R(i, 2j + 1)
!

Issues?

Expensive for large images



Loop Reordering

Original Image (I) Row-wise 1-D DWT (R) Column-wise 1-D DWT (C)

L H

LL1 HL1

HH1LH1

for i in [0, n):

for j in [0, n/2):

L = I(i, 2j) + I(i, 2j + 1)
!

H = I(i, 2j) − I(i, 2j + 1)
!

n x n
for i in [0, n/2):

for j in [0, n):

L{L, H} = R(2i, j) + R(2i + 1, j)
!

{L, H}H = R(2i, j) − R(2i + 1, j)
!

Solution II:

Loop-reordering exploits row-
major layout; effectively 
lowering cache miss rate



Loop Reordering

Original Image (I) Row-wise 1-D DWT (R) Column-wise 1-D DWT (C)

L H

LL1 HL1

HH1LH1

for i in [0, n):

for j in [0, n/2):

L = I(i, 2j) + I(i, 2j + 1)
!

H = I(i, 2j) − I(i, 2j + 1)
!

n x n
for i in [0, n/2):

for j in [0, n):

L{L, H} = R(2i, j) + R(2i + 1, j)
!

{L, H}H = R(2i, j) − R(2i + 1, j)
!

Issues?

Entire image undergoes row-wise 
transform followed by column-wise 
transform; inefficient data reuse



2-D Haar Block-Based DWT

Original Image (I) 2-D Block-based DWT

LL1 HL1

HH1LH1

for i in [0, n/2):

for j in [0, n/2):

LL1 = I(2i, 2j) + I(2i, 2j + 1) + I(2i + 1, 2j) + I(2i + 1, 2j + 1)
!

HL1 = I(2i, 2j) − I(2i, 2j + 1) + I(2i + 1, 2j) − I(2i + 1, 2j + 1)
!

LH1 = (I(2i, 2j) + I(2i, 2j + 1)) – (I(2i + 1, 2j) + I(2i + 1, 2j + 1))
!

HH1 = (I(2i, 2j) − I(2i, 2j + 1)) − (I(2i + 1, 2j) − I(2i + 1, 2j + 1))
!

n x n

Solution:

• Perform row AND column transform 
on a 2x2 block of input image 

• Allows efficient data reuse as image is 
read/written only once

Intermediate row-transform



OpenMP Realization

T0

T1

T2

T3

T0

T1

Tiled Transposed Variant Loop Re-ordered Variant Block-based Variant

T0 T1

T2 T3

• 1 Row/thread 
• Exploits row-major layout

• 1 Tile/thread 
• Tile size determined based on 

cacheline size to avoid false-sharing

• 2 Rows/thread 
• Exploits row-major layout



Parallelizing on GPU
• Forward Haar-DWT:
• Each level involves a row-wise operation and a column-wise operation
• Every level is hierarchically dependent of the previous level
• Active operating pixel area drops after every level

Level 1

Level 2

A
A A

A

A Active area



GPU Row-Column DWT
• GPU Row-Column Haar-DWT:
• For loop indexing over image replaced with GPU threads
• Each level involves a row pass kernel and a column pass kernel
• Iterates kernel call with varying grid dimensions as level changes

Row 
kernel

Column 
kernel



GPU Row-Column DWT
• GPU Row-Column Haar-DWT issues:
• Excessive memory access: 4 global reads/writes per final pixel writes per thread

• 2 full passes over image
• Low arithmetic intensity
• Global memory synchronization: 2 kernel passes can slow down/add overhead
• Hierarchical dependency: single level computation still hierarchical

Level 1

Row
kernel

Column
kernel

Row 
kernel

Column 
kernel



Improving GPU Row-Column DWT
• Improving GPU Row-Column Haar-DWT further:
• Having a single stage kernel per level to increase arithmetic intensity
• Operating in tiles to combine row and column kernels
• Reducing the number of global reads/writes via shared memory use

Level 1

Row + Column
kernel



GPU Tiled smem: Forward DWT
• Tiled and shared memory forward Haar-DWT :
• Each block (32x32) processes a tile (32x32 px) of the image independently
• Tile loaded from the image into shared memory
• Row and column component passes performed in shared memory
• Wavelet decomposition written back appropriately



GPU Tiled smem: Inverse DWT
• Tiled and shared memory Inverse Haar-DWT :
• Wavelet decomposition tile loaded into shared memory
• A tile of the image is independently processed by a block
• Inverse column and row component passes performed in shared memory
• Tile written to the image from shared memory



Datasets

• We sourced images from noisy image datasets such as for low-light
photography. We also sourced on deep field astronomical images to
create the following benchmark images (bitmaps)

Benchmark images

256 x 256 512 x 512 1024 x 1024

2048 x 2048 4096 x 4096 8192 x 8192

Verification/debug images

Checker Asymmetric High freq detail

High contrast



Testbed

• We tested our sequential and OpenMP implementations on the PACE
cluster with the following resource configuration

qsub -l walltime=02:00:00 –l nodes=1:gpus=1:teslav100 
-l pmem=8gb -q coc-ice-gpu -I

• Accelerated implementations were tested on NVIDIA V100 GPUs with
the following resource configuration

qsub -l walltime=02:00:00 -l nodes=1:ppn=24 -l 
pmem=8gb -q coc-ice -I



Validation

• Validation of our algorithms was performed in two steps, by
composing the forward and inverse transforms.

Forward 
transform

Validation 
image

n_levels

Inverse 
transform

Output 
image

Equality 
check

f f-1

Detail coefficient imageInput image Output image



CPU Validation

OpenMP implementation validation for image size: 4096 x 4096

Reconstructed Image

Forward Haar Transform

Input Image

N_level = 3

N_level =5



GPU Validation

GPU implementation validation for image size: 1024 x 1024

Reconstructed ImageForward Haar TransformInput Image

N_level = 3

N_level =5

N_level = 3

N_level =5



Performance Metric & Baseline

• To evaluate the performance of our algorithms, we adopted time
to solution (ms) for 2-D forward Haar transform as our metric
• Baseline: 
• CPU: Sequential implementation 
• GPU: Shared memory OpenMP implementation (with 24 cores)

• Four versions of the CPU implementation were tested:
sequential, openmp_loop_reordered, openmp_blocked, openmp_transposed

• Two versions of the GPU implementation were tested:
gpu_row_column, gpu_tiled_shared_mem



CPU Baseline Exploration

Insight 
• Transposition is better than loop 

reordering for smaller images

• For larger images, loop reordering 

and blocking give better speedup

• Block-based approach is the most 

efficient, irrespective of image size



CPU Baseline Exploration

Insight 
• Transposition is better than loop 

reordering for smaller images

• For larger images, loop reordering 

and blocking give better speedup

• Block-based approach is the most 

efficient, irrespective of image size

Baseline: Shared memory block-based 
DWT (24 cores)



CPU Baseline Exploration

Insight 
• Time to solution does not vary 

significantly across levels due to 

halving of workload

• Transposition speedup increases 

across levels as image size 

decreases (expensive for large 

images)



Performance Evaluation
• Baseline: Shared memory block-based DWT (24 cores)



Performance Evaluation
• Baseline: Shared memory block-based DWT (24 cores)



Performance Comparison
Comparing with PDWT kernel (doesn't do coefficient image stitching, unfair
advantage over in-place transform)

https://github.com/pierrepaleo/PDWT


Future directions
• Vectorized computation and memory access
• Computing multiple levels in one kernel:
• Levels form a pyramidal structure in terms of computation and memory
• Increases arithmetic intensity
• Reduces global reads/writes

Level 1

Multi-level Row + Column kernel

Level 2
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Thank you



Appendix



FLIP Fluid Simulation 
on CUDA
Sorakrit Chonwattanagul



Overview

+Aims to simulate specifically liquids inside a fixed domain

+Reproduce algorithm for GPUs

+Hybrid method, using grids and particles

+Physics calculations are done on the grid

+Particles determine shape of fluid

+ Source code at: https://github.com/keptsecret/FLIPonCUDA



Overview

FLIP procedure

1. Simulate particle movement

1. Create mesh from particles

2. Advect particle velocity to grid

3. Apply forces, e.g. gravity

4. Solve incompressibility (pressure)

5. Advect velocity field to particles



Overview

+Uses marker-and-cell method with staggered grid

+8 marker particles placed in each cell

+Jittered initialization

+Boundary cells of domain set as solid

+No correction methods implemented

+Particle separation to preserve volume



Overview

FLIP procedure

1. Simulate particle movement

1. Create mesh from particles

2. Advect particle velocity to grid

3. Apply forces, e.g. gravity

4. Solve incompressibility (pressure)

5. Advect velocity field to particles

CUDA accelerated

CUDA accelerated

Simple loop

Simple loop (not really but…)

Simple loop

CUDA accelerated (partially)



CUDA accelerated velocity field advection

+Still has lots of setting values in loops

+Particle velocity first transferred to a scalar field

+Scalar field values then determine velocity field values

+This is mostly just copying values over



CUDA accelerated velocity field advection

+Scalar field represented by 3D array of floats

+Each particle contributes a velocity at its position in scalar field

+Split scalar field array into smaller 8x8x8 sub-arrays

+Determine which particles affect which sub-arrays

+CUDA kernel does calculation for set of sub-arrays
+Each block handles one sub-array and its particles

+Each thread handles one cell of sub-array



CUDA accelerated particle advection

+Transferring velocities from grid onto particles

+Lots of interpolation involved, mainly tricubic

+Interpolate one direction at a time: 𝑢𝑥 , 𝑢𝑦, 𝑢𝑧



CUDA accelerated particle advection

+Split velocity field array into smaller sub-arrays

+Determine which particles are inside which sub-arrays

+CUDA kernel does calculation for set of sub-arrays

+Each block handles one sub-array and its particles

+Each thread handles one particle

+Lots of padding of particle velocities and field values 

+When trying to interpolate values outside of domain



Testing

+Validation and baseline:

+Compare to single-threaded simulation

+ Fixed initialization seed

+Would like to use external FLIP solvers (e.g. Mantaflow) as 

comparison but:

+ Parameters are different (also more than this has)

+ Random initialization



Testing: Scenario 1

+Fluid sphere drop

+Simulated on a 64x64x64 grid with 0.125 

cell size for 60 frames

+Particles created: 462,848

+ All scenes rendered in Blender Cycles

+ Tested on Intel i9-11900H @ 4.2GHz and RTX 3060 Mobile @ 1435 MHz



Testing: Scenario 1

+Total running times

+Between 2x-3x faster than 

single-threaded CPU



Testing: Scenario 1

+Total running times

+Between 2x-3x faster than 

single-threaded CPU



Testing: Scenario 1

+Velocity field advection

+Not much difference

+Should see more significant 

difference on a larger grid with 

smaller cells



Testing: Scenario 1

+Particle advection

+Most difference seen: about 

5x-7x faster



Testing: Scenario 2

+Fluid cuboid wave with solid obstacle

+Simulated on a 128x64x64 grid with 

0.125 cell size for 120 frames

+Particles created: 722,672

+ All scenes rendered in Blender Cycles

+ Tested on Intel i9-11900H @ 4.2GHz and RTX 3060 Mobile @ 1435 MHz



Testing: Scenario 2

+Total running times

+Again, ~3x faster than single-

threaded CPU



Testing: Scenario 2

+Total running times

+Again, ~3x faster than single-

threaded CPU



Testing: Scenario 2

+Velocity field advection

+Can see the general speedup 

here of about 1.2x-1.7x



Testing: Scenario 2

+Particle advection

+Again, the biggest speedup 

seen of 6x-8x



Times per sub-step

Arch Total time 
(s)

# steps Time per step 
(s)

Velocity advection 
time per step (s)

Particle advection 
time per step (s)

CPU 814.79249 168 4.84995 0.44612 3.77468

CUDA 268.95110 172 1.56366 0.37457 0.65610

Speedup 3.02x - 3.10x 1.19x 5.75x

Scenario 2

Arch Total time 
(s)

# steps Time per step 
(s)

Velocity advection 
time per step (s)

Particle advection 
time per step (s)

CPU 368.68554 117 3.15115 0.28086 2.43153

CUDA 122.04680 111 1.09952 0.26287 0.49833

Speedup 3.02x - 2.87x 1.07x 4.88x

Scenario 1



Implementation issues/speed bumps

+OpenVDB was harder to integrate in a CMake project than 

expected

+Planned to use it for fast particle-to-mesh conversion

+Had to write one/adapt from existing code (Marching cubes), unsure 

of how much overhead could have been saved

+Less parallelizable than expected

+At least on GPU

+Lots of overhead copying data between host and device



Potential improvements

+Simulation Features:

+Diffuse particles, e.g. bubbles, spray

+Importing meshes as solid obstacles

+Parallelization Features:

+Multithreading (though I don’t expect to see much more speed up)

+CUDA unified memory (cudaMallocManaged)

+ Makes memory accessible from CPU and GPU, reducing need to copy data

+ Scaling issue: potential to run out of memory on massive scenes



Accelerating Proximal Policy 
Optimization (PPO)

Akhil Goel, Matthew Woodward, Qingyu Xiao



Outline

● Problem Definition, Category, Performance Metrics
● Baselines & Dataset
● Proposed Solution
● Challenges
● Methods
● Results
● Discussion 


Problem Definition

● Reinforcement Learning 
● High sample volume
● Embarrassingly parallel
● Bottlenecks

ー Environment Simulation
ー Scaling across multiple 

GPUS (synchronization 
cost & errors) Training time steps is very large, roughly 5e7 time steps



Project Category & Performance Metric

● Reproducibility: DD-PPO (https://arxiv.org/abs/1911.00357)
ー Decentralized Distributed Proximal Policy Optimization
ー Key Ideas:

i. Environment Acceleration 
ii. Multi-GPU Scaling

● Scaling Metrics
ー Frames Per Second (FPS) (steps of experience / second)
ー Total Training Time (for fixed total samples)

● Validation Metric: Policy Reward



Baselines & Dataset

● Classical PPO (https://arxiv.org/abs/1707.06347)
ー Single Worker (CPU + GPU)

● Environment:
ー OpenAI Gym - Pong



Proposed Solution

● DD-PPO (https://arxiv.org/abs/1911.00357)
ー GPU Acceleration of Environments 
ー Decentralized synchronous update with worker pre-emption
ー



Challenges

● Compute resources limit scaling tests
ー Computationally simpler environment
ー Measuring synchronization costs at small scale

● Cuda Driver, GPU model, PyTorch Version, 3rd Party Library 
Compatibility

● Lack of Docker and Root Access
● “Exclusive-Process” GPU Mode

Anticipated

Not Anticipated



Methods

● CULE
ー GPU Accelerated Atari Learning 

Environments
ー Based on Pytorch and CUDA

● Ray
ー Distributed Computing
ー Actor-based programming model
ー Easy to use API
ー Work with Pytorch



Methods

● ale_start_steps=400
● batch_size=256
● episodic_life=True
● lr=0.00025
● max_episode_length=18000

● normalize=False
● ppo_epoch=3
● num_stack=4
● Num_steps=20
● t_max=5,000,000
● optimizer=SGD

Constant Hyperparameters



Methods

● GPU Acceleration of Environments 
● Number of Parallel Atari Learning Environments
● Number of Batches
● Number of Steps

Independent Variables

Dependent Variables

● Frames per Second (FPS) (steps of experience / second)
● GPU Memory Usage
● Total Time (per fixed training samples)



Validation: Pong using GPU CULE PPO

Game out of 21 


CPU vs GPU



Number of Atari Learning Environments



Number of Batches



Number of Steps



Discussion

● Near-Linear Scaling for GPU Acceleration of Environment
● Limited by Memory Bandwidth
● Training quality can be hindered if only optimizing for 

performance
ー N-Steps improves model quality but higher memory footprint

● Batch_Size has no significant influence
ー Environment Simulation is bottleneck
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