
Accelerating
K-means
Clustering
Sreemanth Prathipati and Sooraj Karthik

● Very widely used
○ Image compression
○ Video recommendation systems
○ Insurance fraud detection

● Algorithm
○ Randomly initialize cluster centers
○ Assign points to centers based on distance
○ Adjust centers to mean of assigned points

● Potential for GPU acceleration
○ Most of the algorithm is embarrassingly parallel

Background and Motivation

Problem Category and Definition

● Problem
○ Accelerate K-means Clustering using GPU

● Categories
○ Reproduce results from prior publications
○ See if we can discover any novel approaches to solve the problem more

efficiently

Performance Metrics and Baselines

● Metric: Most papers look at execution time per iteration (ms)

● Baselines:
○ sklearn implementation
○ OpenMP implementation
○ kmcuda (popular open source implementation) [1]

Solution - General Algorithm

● Each thread calculates assignment for one point
● Then we accumulate point values for each cluster
● Finally divide each accumulation by the number of points in the cluster

Solution - Two Approaches

● Separate kernels for calculating cluster assignment and accumulating
point values per cluster

● One kernel that calculates assignment and accumulates values per cluster
● Both then need to divide accumulation by number of points in each cluster

to get the recentered centroid values

Solution - Shared Memory

● Load a chunk of the centroids into shared memory

● Two parameters:
○ SHM_K: number of centroids to load (we used 16)
○ SHM_DIM: number of dimensions to load (we used 16)

● Tiled loop over centroids with step size SHM_K
○ Tiled loop over dimensions with step size SHM_DIM

○ Load data for the current dimensions into shared memory
○ For each centroid in shared memory, accumulate distances from point to

each dimension of centroid
○ Update the point’s assignment

Solution - Privatization

● With just one accumulator, each thread will attempt to add its point’s
value to the accumulator at the same time
○ Major performance drawback due to synchronization from atomic adds

● Solution: Create multiple private copies of the accumulator and reduce all
private copies down to one at the end

● What is a good number of private copies?
○ We used 8 since any more couldn’t fit in cache

● How do we assign threads to accumulators?
○ Round-robin by warp so that memory access is still coalesced if possible

Solution - Memory Layout

● Row major order - Points are contiguous in memory
● Column major order - Dimensions are contiguous in memory
● Assignment - Column major worked best
● Accumulation - Row major worked best
● Hybrid Solution

○ Input points in column major order
○ Input centroids in row major order

Solution - Kernels

● Assignments
● Accumulation
● Fused (Assignment + Accumulation)
● Private copy reduction
● Divide accumulation by number of points in cluster

● K-means algorithm is deterministic once initial cluster centers are chosen

● Fix the initial clusters to some predetermined values

● Run accelerated and sequential algorithms on same inputs and see if the
outputs are the same

Validation

Dataset and Testbed

● Dataset
○ Randomly generated vectors
○ General acceleration for k-means, not specific use-cases

● Test System
○ College of Computing PACE GPU Clusters
○ sklearn and OpenMP baselines on 24 cores
○ Test GPU code on Tesla V100 GPU

Experiments and Plots

● Line Plots
○ x-axis

■ Vary number of points (100k, 200k, 400k, …, 25.6m)
■ Vary number of clusters (16, 32, 64, …, 4096)
■ Vary dimensionality of data (16, 32, 64, …, 4096)

○ y-axis
■ Measure time per iteration

● Breakdown plot
○ Time spent in different parts of the algorithm (assignment, accumulation, etc.)

Speed-up vs sklearn
(for 1024 centroids, 32 dims)

Varying number of points
(for 1024 centroids, 32 dimensions)

Varying number of centroids
(for 1.6m points, 32 dimensions)

Varying number of dimensions
(for 1.6m points, 1024 centroids)

Breakdown for varying points for multi kernel
(for 1024 centroids, 32 dimensions)

Breakdown for varying centroids for multi kernel
(for 1.6m points, 32 dimensions)

Breakdown for varying dimensions for multi kernel
(for 1.6m points, 1024 centroids)

Thank You!

Varying number of points
(for 1024 centroids, 32 dimensions)

Varying number of centroids
(for 1.6m points, 32 dimensions)

Varying number of dimensions
(for 1.6m points, 1024 centroids)

References

[1] Yufei Ding, Yue Zhao, Xipeng Shen, Madanlal Musuvathi, and Todd Mytkowicz. 2015.
Yinyang K-Means: A Drop-In Replacement of the Classic K-Means with Consistent
Speedup. In ICML.

[2] Clemens Lutz, Sebastian Breß, Tilmann Rabl, Steffen Zeuch, and Volker Markl. 2018.
Efficient and Scalable k-Means on GPUs. In Datenbank-Spektrum volume 18, pages
157–169.

[3] Maliheh Heydarpour Shahrezaei and Reza Tavoli. 2019. Parallelization of Kmeans++
using CUDA. arXiv:1908.02136.

[4] Can Yang, Yin Li, and Fenhua Cheng. 2020. Accelerating k-Means on GPU with CUDA
Programming. doi:10.1088/1757-899X/790/1/012036.

GPU-Accelerated Algebraic Multigrid Methods (AMG)

Bao Li
CSE 6230 – Spring 2023

• Category:
• AMG Solver (V-cycles): apply to structural optimization
• the AMG algorithm solves the large (fine) linear system by cycling through levels

composed of smaller (coarse) linear systems and finding updates that bring one
closer to the exact solution

Category

Problem Statement
• Objective

• Large sparse matrix from large scale structure
optimization:

!" = $
• Setup phase

• Strength-of-connection
• Aggregation
• Construction of the tentative prolongation
• Prolongation smoothing

• Solve phase
• Pre-smooth
• Solve
• Post-smooth

Performance Metric && Baselines
• Performance Metric

• Timing: the speed of solving lager sparse linear system
• Scaling: difference number of degree freedom for the structure
• Breakdown: plot for setup and solve phase

• Baseline:
1. Python: x = np.linalg.solve(A, b)
2. C++: pure sequentially AMG with single CPU

• Accelerated:
1. AMG + OpenMP
2. AMG + GPU:Thrust

Proposed Solution
• AMG + OpenMP
• AMG + GPU:Thrust

• Thrust: C++ standard template library for CUDA based on the (STL)

Proposed Solution
• Data containers:

• thrust::host_vector<T> stored in host memory
• thrust::device_vector<T> lives in GPU device memory
• thrust::universal_vector<T> both GPU and CPU can allocate
• iterator: begin, end
• the “=” operator can be used to copy data

Proposed Solution

CPU+BRS format GPU+COO format

Datasets
• Data Store Format

• Coordinate Format (COO)
• Block Compressed Sparse Row Format (BSR)

Validation of solution
• GoogleTest

• GoogleTest is Google’s C++ testing and mocking
framework

• #include <gtest/gtest.h>

Test Bed

Intel(R) Core(TM) i9-10980XE CPU
18 Core 36 threads

NVIDIA GeForce RTX 3090
CUDA Version: 11.6

Results:
• Single CPU vs OpenMP vs GPU:Thrust

• For the case: n = 37281, nnz = 924385 (non-zero elements)

Method Time (s)
np.linalg.solve 103.57
Single CPU 5.36431
OpenMP 1.45374
GPU:Thrust 0.456715

It is not possible to achieve 100% parallelization of the AMG algorithm.

Strong Scaling Breakdown: setup vs solve phase

Result

Setup phase have deeper parallelization on a GPU

GPU-Accelerated Vortex
Particle Method (VPM)

Shreyas Ashok, Anand Radhakrishnan, Russell Newton

Introduction

● Vortex particle method (VPM) is a
Computational Fluid Dynamics (CFD)
technique used to solve the Euler or
Navier-Stokes fluid equations of motion.

● Lagrangian approach—track individual
particles of vorticity

○ In contrast with traditional Eulerian approach -
discretize domain into a grid

● We reproduced simple 2D VPM using
optimization techniques for single CPU
and single GPU

Vortex Particle Method used for
Multirotor Interaction Simulation

Alvarez, E. J., and Ning, A., “Development of a
Vortex Particle Code for the Modeling of Wake
Interaction in Distributed Propulsion,” AIAA

Applied Aerodynamics Conference, Atlanta, GA,
Jun. 2018. doi:10.2514/6.2018-3646

Baseline and Performance Metrics

Baseline:

● Sequential N-Body simulation of Taylor-Green Vortex on CPU
● Validated against analytical Taylor-Green Vortex solution

Performance Metrics

● Time per step of simulation
● Speedup versus baseline sequential CPU code
● Accuracy to analytical solution
● Accuracy of reduced-order problem versus full N-body solution

Baseline - Taylor Green Vortex

● The Taylor-Green Vortex is an
analytical solution to the
Navier-Stokes equations

● 2D unsteady flow, periodic boundary
conditions

● Simple boundary conditions and
known analytical solution make this
the perfect flow on which to test our
VPM code!

Taylor-Green Vortex Visualization
(Reproduced from Wikipedia)

Solution Video (link)

Validation of Solution

● VPM code represents expected behavior of
Taylor-Green Vortex well!

○ Velocity contours visualized with Paraview and compared to
known solution

● Dissipation rate is roughly in line with analytical
values, although not perfect

○ Plot on right shows U Velocity at selected measurement
point in domain

● Issue we encountered: “particle volume”
○ This parameter was not well-defined in the literature we

used as reference to write the code; we probably have
implemented this slightly wrong

○ Had to add a magic “multiplier value” of 0.1 to our particle
volume to achieve roughly correct dissipation rates

● Issues don’t affect HPC side of things

Solution

● Baseline solution: sequential code on CPU
● Accelerated solutions:

○ Originally wanted to try a distributed memory approach, but got complicated really fast
■ In raw form, VPM is an N-Body problem; a distributed memory approach of the raw form

would require all-to-all communication of all N particles → hugely impractical!

○ To make VPM practical on distributed memory → need to reduce the order of the problem.

○ Tree-code approach, which helps group particles together into clusters, reduces the problem
to O(NlogN).

○ On distributed memory system, theoretically possible to limit communication to higher
branches of the tree

Solution
● Baseline solution: sequential code on CPU
● Accelerated solutions:

○ Implemented a tree code approach on CPU

○ Implemented n-body problem on GPU
■ It’s great for doing simple things fast

○ Attempted to implement the tree code on GPU
■ In progress

○ Did not achieve distributed memory solution in the time available; however, the code we
developed can serve as a base for a distributed implementation.

Tree Code

● Split the domain into quadrants

● Keep subdividing until each particle is in its own quadrant

● Subdivisions define a tree that can then be searched down
○ Inner nodes contain the centroidal position and vorticity of all particles in

their children

● The approximation with inner nodes can be used instead of an
individual particle if (quadrant size) / (distance to centroid) <
(threshold)

● Changes the problem from quadratic time to loglinear time
Quadtree Graphical Representation

(Reproduced from Wikipedia)

CPU Tree Code: Performance Results

● For larger particle numbers and larger groupings, tree code provides large
speedup.

● Overhead of building the tree is not worth it for small numbers of particles and
small opening angles (less clustering)

CPU Tree Code: Accuracy Results

● Tree approach is inherently an approximation of
the true N-body problem

● Results show average particle position error
versus opening angle, as compared to full N-body
simulation.

○ How much accuracy did we lose because of the tree
approximation?

● Opening Angle = 0.2 seems to be the limit at which
error starts to grow dramatically.

● Around Opening Angle = 0.3, the simulation goes
unstable for higher particle counts.

GPU Implementation (N-body problem)

● GPU offloading via OpenACC with NVHPC 22 compiler
● Simplify data structures to enable compiler optimizations
● Struct-of-arrays preferred over Array-of-structs for GPUs
● Nested parallelization with OpenACC gangs and vectors
● Manual inlining of subroutines for higher speedups
● ~1000X speedup using V100 GPU over Xeon Gold CPU on PACE (Phoenix)
● 67.81% SM utilization for GPU kernel with N = 4096
● Compute bound with large arithmetic intensity; 30% of Peak FLOPs
● High L1 (77%) and L2 (99%) Cache hit rate

GPU speedups; NVIDIA V100 v/s Intel Xeon Gold (-O2)

N CPU (ms) GPU (ms) Speedup

256 2.45 0.02108 115

625 14.086 0.0386 365

1024 37.0801 0.07024 528

1600 88.8086 0.14184 627

2500 213.625 0.30168 708

4096 732.165 0.7404 990

GPU + Treecode

● Treecode data structures inherently sequential; not suitable for accelerators
● Need to conduct Depth-First Search (DFS) prior to GPU parallelization
● Current implementation does not warrant efficient utilization of GPUs

Alternate approach (work in progress)

● Rather than implement the full tree on GPUs, just implement a single level grid by
dividing the domain into a 16x16 region (note: decomposition amount is tunable).

● Assign one thread per region, loop through all N particles, and assign each one to a
box.

● Continue as per the tree code approach.
● This approach leads to less clustering efficiency due to there only being one level of

the tree, but may be more effective on GPUs due to better parallelization.
● Initial implementation is in progress–still working out some bugs…

Complications

● After getting a successful tree code implementation, we weren’t able to finish
a distributed approach

○ How to keep each process from requiring access to the entire tree
○ What does that communication look like?

● Compiler errors with nvhpc when trying to validate the GPU code
○ Streams weren’t behaving correctly

● Getting the treecode to work on the GPU required a complete revamp of the
data structure

○ Big array with integer indices to children
● Lots of segfaults

Testbeds

● GPU Computing Results conducted on Tesla V100 on Phoenix PACE cluster

● CPU results taken on Intel® Core™ i9-10980XE CPU @ 3.00GHz, on lab
workstation

Accuracy Errors

● We used simple Euler first-order forward integration in time
○ Runge-Kutta would have likely improved our results considerably

● The tree code seems to reduce overall energy dissipation
○ Possible our approximation of vorticity at cell center of mass is slightly off

● Papers we found didn’t explain a few things very well:
○ Particle mass and volume
○ We had to introduce a fudge factor for initial vorticity

References

Meldgaard, A., Darkner, S., & Erleben, K. (2022). Fast Vortex Particle Method for Fluid-Character
Interaction. Graphics Interface 2022. Retrieved from
https://openreview.net/forum?id=BrBlpeYNTMc

Marchevsky, I., Sokol, K., Ryatina, E., & Izmailova, Y. (2023). The VM2D Open Source Code for
Two-Dimensional Incompressible Flow Simulation by Using Fully Lagrangian Vortex Particle
Methods. Axioms, 12(3). doi:10.3390/axioms12030248

He, C., & Zhao, J. (2009). Modeling Rotor Wake Dynamics with Viscous Vortex Particle Method.
AIAA Journal, 47(4), 902–915. doi:10.2514/1.36466

Alvarez, E. J., and Ning, A. (2018). Development of a Vortex Particle Code for the Modeling of
Wake Interaction in Distributed Propulsion. AIAA Applied Aerodynamics Conference,
Atlanta, GA, Jun. 2018. doi:10.2514/6.2018-3646

Tan, J., and Wang, H. (2013). Simulating unsteady aerodynamics of helicopter rotor with
panel/viscous vortex particle method. Aerospace Science and Technology, 30(1), 255-268.
doi:10.1016/j.ast.2013.08.010

Distributed Hyperparameter Tuning for
Machine Learning Models in Catalysis

CSE6320: High Performance Parallel Computing

Project Presentation
April 18, 2023
Omar Jiménez

Motivation: Data-Driven Catalyst Discovery Workflow

CSE6320: High Performance Parallel Computing 1

ML -> Training ->
Hyperparameters

Example at end of
presentation

*many variations, this is
just one example

*ML Potentials = models for
(energy) property predictions

of chemical systems

Project

CSE6320: High Performance Parallel Computing 2

Project Type: Application. I will integrate distributed hyperparameter
search algorithms into training of ML potentials relevant to data-
driven catalyst discovery workflows

Original idea from Piazza
post on 03/08/23

Problem Statement

Problem: Depending on the search space, search algorithms
for hyperparameter tuning can be computationally expensive
(from hours to days). State-of-the-art packages for training of
ML potentials (e.g., SchNetPack, AMPTorch, etc.) do not
support distributed hyperparameter tuning.

Solution: Distributed Hyperparameter Search

3CSE6320: High Performance Parallel Computing

Implemented Algorithms

4

1. Grid Search: classical example
and very easy to distribute (no
dependency between tasks). No
communication, each NN is trained
to convergence and best set is
selected

Hyperparameter 1

Hy
pe

rp
ar

am
et

er
 2

CSE6320: High Performance Parallel Computing

Implemented Algorithms

5

2. Population Based Training (PBT): originally proposed by
Jaderberg et. Al (2017). Similar to EA

CSE6320: High Performance Parallel Computing

Experiments

6CSE6320: High Performance Parallel Computing

Dataset
• Open Catalyst 2020 (OC20), dataset

of catalysis DFT calculations
• Small chunk of it. Full dataset has

millions of data points which is not
feasible given resource constraints

Testbed

• Ray AWS Cluster

1. ACSF Calculations GPU Acceleration (attempt)

7CSE6320: High Performance Parallel Computing

Not really expected to work just by looking at equations, computation is not
linear algebra heavy (tensors are small, !×! where typically ! < 100)

2. Grid Search Results

8CSE6320: High Performance Parallel Computing

Validation (correctness)

Distributed Hyperparameter Tuning is embarrassingly parallel by nature

3. PBT Results

9CSE6320: High Performance Parallel Computing

Distributed Hyperparameter Tuning is embarrassingly parallel by nature

Validation (correctness)

4. Generative Model Performance

10CSE6320: High Performance Parallel Computing

Scaling obvious by now (+ expensive in this case), focus on “performance” improvement

