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Background and Motivation

e \Very widely used
o Image compression
o Video recommendation systems
o Insurance fraud detection

e Algorithm
o Randomly initialize cluster centers
o Assign points to centers based on distance
o  Adjust centers to mean of assigned points

e Potential for GPU acceleration
o  Most of the algorithm is embarrassingly parallel



Problem Category and Definition

e Problem
o  Accelerate K-means Clustering using GPU

e C(Categories
o  Reproduce results from prior publications
o See if we can discover any novel approaches to solve the problem more
efficiently



Performance Metrics and Baselines

e Metric: Most papers look at execution time per iteration (ms)

e Baselines:
o sklearn implementation
o  OpenMP implementation
o kmcuda (popular open source implementation) [1]



Solution - General Algorithm

e Each thread calculates assignment for one point
e Then we accumulate point values for each cluster
e Finally divide each accumulation by the number of points in the cluster



Solution - Two Approaches

e Separate kernels for calculating cluster assignment and accumulating
point values per cluster

e One kernel that calculates assignment and accumulates values per cluster

e Both then need to divide accumulation by number of points in each cluster
to get the recentered centroid values



Solution - Shared Memory

e Load a chunk of the centroids into shared memory

e [wo parameters:
o  SHM_K: number of centroids to load (we used 16)
o  SHM_DIM: number of dimensions to load (we used 16)

e Tiled loop over centroids with step size SHM_K
o Tiled loop over dimensions with step size SHM_DIM
o Load data for the current dimensions into shared memory
o  For each centroid in shared memory, accumulate distances from point to
each dimension of centroid
o Update the point’s assignment



Solution - Privatization

e \With just one accumulator, each thread will attempt to add its point’s

value to the accumulator at the same time
o  Major performance drawback due to synchronization from atomic adds

e Solution: Create multiple private copies of the accumulator and reduce all
private copies down to one at the end

e \Whatis a good number of private copies?
o  We used 8 since any more couldn’t fit in cache

e How do we assign threads to accumulators?
o Round-robin by warp so that memory access is still coalesced if possible



Solution - Memory Layout

Row major order - Points are contiguous in memory

Column major order - Dimensions are contiguous in memory
Assignment - Column major worked best

Accumulation - Row major worked best

Hybrid Solution

o Input points in column major order
o Input centroids in row major order



Solution - Kernels

Assignments

Accumulation

Fused (Assignment + Accumulation)

Private copy reduction

Divide accumulation by number of points in cluster



Validation

e K-means algorithm is deterministic once initial cluster centers are chosen
e Fix the initial clusters to some predetermined values

e Run accelerated and sequential algorithms on same inputs and see if the
outputs are the same



Dataset and Testbed

e Dataset
o Randomly generated vectors
o  General acceleration for k-means, not specific use-cases

e Test System
o College of Computing PACE GPU Clusters
o sklearn and OpenMP baselines on 24 cores
o Test GPU code on Tesla V100 GPU



Experiments and Plots

e Line Plots
O  Xx-axis
= Vary number of points (100k, 200k, 400k, ..., 25.6m)
= Vary number of clusters (16, 32, 64, ..., 4096)
= Vary dimensionality of data (16, 32, 64, ..., 4096)
o  y-axis
= Measure time per iteration

e Breakdown plot
o Time spent in different parts of the algorithm (assignment, accumulation, etc.)



Points sklearn OpenMP kmcuda GPU (Multi) GPU (Fused)

1600000 6283.58212 5185.678711 681.223 20.518425 20.050787
6400000 25684.38191  20506.08984 2725.77 79.674774 78.076813
25600000 106085.2839  83914.90625 10775.4 321.583221 310.804016
Points OpenMP vs sklearn kmcuda vs sklearn Multi vs sklearn  Fused vs sklearn
1600000 1.211718363 9.223972356 306.2409576 313.3833161
6400000 1.252524596 9.422798661 322.3652935 328.9629907
25600000 1.264200708 9.845136503 329.8843875 341.3253318

Speed-up vs sklearn
(for 1024 centroids, 32 dims)



Runtime vs Number of Points Speed-up vs Number of Points

== OpenMP == kmcuda GPU (Mult) == GPU (Fused) == Multivs OpenMP == Fused vs OpenMP Multi vs kmcuda == Fused vs kmcuda
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Varying number of points
(for 1024 centroids, 32 dimensions)



Runtime vs Number of Centroids Speed-up vs Number of Centroids

== OpenMP == kmcuda GPU (Multi) == GPU (Fused) == Multi vs OpenMP == Fused vs OpenMP Multi vs kmcuda == Fused vs kmcuda
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Varying number of centroids
(for 1.6m points, 32 dimensions)



Runtime vs Number of Dimensions Speed-up vs Number of Dimensions

== OpenMP == kmcuda GPU (Mult) == GPU (Fused) == Multivs OpenMP == Fused vs OpenMP Multi vs kmcuda == Fused vs kmcuda
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Varying number of dimensions
(for 1.6m points, 1024 centroids)
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Breakdown for varying points for multi kernel
(for 1024 centroids, 32 dimensions)



@ Divide | Reduce [l Accumulate [l Assignments

100%
75%
50%
25%
0%
128 1024
Centroids

Breakdown for varying centroids for multi kernel
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B Divide [ Reduce [l Accumulate [l Assignments
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Breakdown for varying dimensions for multi kernel
(for 1.6m points, 1024 centroids)



Thank You!



(1024 Centroids, 32 Dims)

Points
100000
200000
400000
800000

1600000

3200000

6400000
12800000
25600000

OpenMP
397.94693
776.866089
1334.538452
2603.54541
5185.678711
9808.177734
20506.08984
40863.57031
83914.90625

kmcuda
44,6551
86.5079
171.241
342.668
681.223
1363.41
2725.77
5386.01
10775.4

GPU (Multi)
1.948475
3.037998
5.257742
10.552134
20.518425
40.376541
79.674774

159.100525

321.583221

GPU (Fused) Multivs OpenMP Fused vs OpenMP  Multi vs kmcuda Fused vs kmcuda

1.718443
2.968124
5.165946
10.1518
20.050787
39.511032
78.076813
155.551071
310.804016

Varying number of points
(for 1024 centroids, 32 dimensions)

204.235071
255.7164583
253.8234953
246.7316478
252.7327858
2429177312
257.3724256
256.8412035
260.9430492

231.5741226
261.7363995
258.3337983
256.4614561
258.6271906
248.2389661
262.6399446
262.7019541
269.9929921

2291797431
28.47529854
32.56930447
32.47381051
33.20055024
33.76737992
34.21120467
33.85287384
33.50734521

25.98579063
29.1456489
33.14804297
33.75440809
33.9748759
34.50707134
34.91138912
34.62534822
34.66943619



(1.6m Points, 32 Dims)

Centroids
16
32
64
128
256
512
1024
2048
4096

OpenMP
374.847137
428.820801
488.825439
781.850098
1378.449951
2622.853027
5173.661133
10254.71289
20472.92969

kmcuda
1686.13
1321.03
1084.3
744.393
585.623
563.979
683.666
998.99
1732.94

GPU (Multi)
2.771489
2.893906
3.136674
4.341387
6.868345
11.367249
20.731724
39.875362
81.440125

GPU (Fused) Multivs OpenMP Fused vs OpenMP  Multi vs kmcuda Fused vs kmcuda

2111751
1.675712
1.928638
3.102794
5.559126
10.224707
20.043591
38.900322
77.805298

Varying number of centroids

(for 1.6m points, 32 dimensions)

135.2511726
148.1806254
155.8419648
180.0922373
200.6960849
230.7377121
249.5528656
257.1691485
251.3862754

177.5053673
255.9036404
253.4562935
251.9825996
247.9616312
256.5210941
258.1204702
263.6151159
263.1302779

608.3841574
456.4868382
345.6846328
171.464327
85.26406289
49.61437899
32.97680405
25.05281331
21.27870015

798.4511432
788.3395237
562.210223
239.9105451
105.3444372
55.158451
34.10895782
25.68076429
22.27277633



(1.6m Points, 1024 Centroids)

Dims
16
32
64

128
256
512

1024

2048

4096

OpenMP
2389.287109
5163.658691
10725.07813
23816.41406
49905.13281
99945.85156

182942.625
367159.9688

kmcuda
321.994
682.052
1223.13
2104.66
4126.66
9449.68
18725.9
35604.5

GPU (Multi)
10.678869
20.711267
45.191441
91.884033
183.599182
371.703979
866.659485

1355.765625

GPU (Fused)
9.914097
20.044476
43.603279
89.597191
180.504318
362.667786
731.849487
1490.542725

Varying number of dimensions

(for 1.6m points, 1024 centroids)

223.7397152
249.3164079
237.3254291
259.2007913
271.8156599
268.8856112
211.0893934
270.8137468

240.9989643
257.6100613
245.9695319
265.8165261
276.4761163
275.5851372
249.973018
246.3263633

30.15244405
32.93144741
27.06552331
22.9056119
22.4764618
25.42259576
21.60698674
26.26154502

Multi vs OpenMP Fused vs OpenMP  Multi vs kmcuda Fused vs kmcuda

32.47839919
34.02693091
28.05133073
23.49024536
22.86183536
26.05602252
25.58709179
23.88693689
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GPU-Accelerated Algebraic Multigrid Methods (AMG)
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Category

« Category:
« AMG Solver (V-cycles): apply to structural optimization

« the AMG algorithm solves the large (fine) linear system by cycling through levels
composed of smaller (coarse) linear systems and finding updates that bring one
closer to the exact solution

start with initial guess x, Solve Ax=f end with approximation x,

1. pre-smooth

8. post-smooth

xj+2=xj+1+M-1(f-A*Xj+1) i

2. r=f-A*x 7. X1 =X;+d
i 3.g=PT*r 6. d=P*e
U 4. C=PT*A*p 5. Solve Ce=g

Gr Georgia
Tech.



Problem Statement

* Objective
 Large sparse matrix from large scale structure

optimization:
Ku=f

» Setup phase

* Strength-of-connection
* Aggregation
e Construction of the tentative prolongation
* Prolongation smoothing
* Solve phase
* Pre-smooth
e Solve
* Post-smooth

(b) Unstructured mesh aggregates & Georgia
Tech.



Performance Metric && Baselines

e Performance Metric

« Timing: the speed of solving lager sparse linear system
 Scaling: difference number of degree freedom for the structure

» Breakdown: plot for setup and solve phase

 Baseline:
1. Python: x = np.linalg.solve(A, b)
2. C++: pure sequentially AMG with single CPU

e Accelerated:
1. AMG + OpenMP
2. AMG + GPU:Thrust

Cr

Georgia
Tech.



« AMG + OpenMP

 AMG + GPU:Thrust
 Thrust: C++ standard template library for CUDA based on the (STL)

Georgia
Tech



« Data containers:

 thrust::host_vector<T> storedin host memory
thrust::device_vector<T> livesin GPU device memory
thrust::universal_vector<T> both GPU and CPU can allocate
iterator: begin, end
the “=" operator can be used to copy data

yf_connection");
-ust::device_vector<T> d_cooValA_ = u_cooValA_;
st::device_vector<I> d_cooRowIndA_ u_cooRowIndA_;

: :device_vector<I> d_cooColIndA_ = u_cooColIndA_;
st::device_vector<I> Ci_(nnz_);

st::device_vector<I> Cj_(nnz_);
SymStrengthConnection<thrust::device_vector<I>, thrust::device_vector<T>>(

epsilon_, d_cooValA_, d_cooRowIndA_, d_cooColIndA_, Ci_, Cj_);
TOCK("strngth_of_connection");

Georgia
Tech



parameters: = (AI ,J,V), COO sparse matrix
return: Cy = (I,J,V), COO sparse matrix

M ={0,...,nnz(A) — 1}
D <+ 0
1 forne M {extract diagonal}

if I, = J,,
I_ D(In) — VW
2 forne M {check strength}

if [Vo| > 04/|D(1,)[ - [D(J,)]
L (s, Ja, Va) < (In, Jn, Vi)

CPU+BRS format GPU+COO format

< Vecl Vec

3

< I, T, M> I SymStrengthConnection epsilon,
BSRMatStrengthOfConnection epsilon, BSRMat<I, T, M, M>& A, lecT &Av
::vector<I>& rowp, std::vector<I>& cols) { . A"
VecI &A1,
std::vector<T> d(A.nbrows); Vecl &Aj,
VecI &Ci,
f (A.diag.data rowp[0] = 0; lecI &Ci
for (I i = 0; i < A.nbrows; i++) { for (I i =0, nnz = 0; i1 < A.nbrows; 1i++ e e
I jp = A.diagli]; I jp_end = A.rowp[i + 1]; I nnz = Ai.size();
_ ‘ r (I jp = A.rowp[i]; jp < jp_end; jp++) { VecT Dx(nnz);
D = MakeSlice(A.Avals, jp); I3j = A.cols[jpl; VecT Abool(nnz);
d[i] = 0.0;
for (I i1 = 0; i < M; di++) fe .
if (i == j

133 =05 3] <M jj+t

R R o @@ o cols[nnz] = j; : . o A ; . : :
el w= B, 33w BE, 153 gt A_zip = thrust::make_zip_iterator (thrust::make_tuple(Av.begin(), Ai.begin(), Aj.begin()));
else thrust::transform(A_zip, A_zip + nnz, Dx.begin(), is_diagonal<I, T>());
}
else T af = 0.0; Dx_new_end = thrust::remove_if(Dx.begin(), Dx.end(), _1 == (I1)0);
= @ < b . a D ) o ) )
rai=06;c< A.nbrows; ”f) { o Aij = MakeSlice(A.Avals, jp); Dx.resize(Dx_new_end - Dx.begin());
Ix col_ptr = A.find_column_index(i, 1) for (I 4 = 0: 91 < M: qi++
., for (I jj = 0; jj < M; jj++) {
f (col_ptr 98 PGS A
jp = col_ptr - A.cols.data; af += Aij (i1, 33) * AI3Gi, 33);
Jp = cotp : : E } Aii_iter = thrust::make_permutation_iterator(Dx.begin(), Ai.begin());
D = MakeSlice(A.Avals, ip); Ajj_iter = thrust::make_permutation_iterator(Dx.begin(), Aj.begin());
d[i] = 0.0; As_zip = thrust::make_zip_iterator(thrust::make_tuple(Av.begin(), Aii_iter, Ajj_iter));
for (99 =@ 19 < [ v T GbgsReRlPRrE(@T = ain) >= thrust::transform(As_zip, As_zip + nnz, Abool.begin(), is_strong_connection<T>(epsilon));
for (I jj = 0; jj < M; jj++) { A2D: :RealPart(epsilon * epsilon * d[i] * d[j])
d[i] += D(ii, jj) * D(ii, jj); cols[nnz] = j;
} nnz++;
Ci_new_end = thrust::remove_copy_if(Ai.begin(), Ai.end(), Abool.begin(), Ci.begin(), _1 == (I1)0);
; Cj_new_end = thrust::remove_copy_if(Aj.begin(), Aj.end(), Abool.begin(), Cj.begin(), _1 == (1)0);

Ci.resize(Ci_new_end - Ci.begin());

Cj.resize(Cj_new_end - Cj.begin());
rowp[i + 1] = nnz;




» Data Store Format
« Coordinate Format (COO)

« Block Compressed Sparse Row Format (BSR)

cusparselndexBase_t idxBase = CUSPARSE_INDEX_BASE_ZERO;

cusparseXcsr2coo (handle,

st::raw_pointer_cast(&u_Ap[0O
thrust::raw_pointer_cast(&u_Ai[0O

Rz

), idxBase);

<
bsr2coo

*Bv,

“Bp,

BJ,

Out &Av,
TOut &A1,
VecIOut &Aj,

I &Av_indx = 0
IC=R;
I RC =R * C;

r (I bi=0; bi < mb; bi++) {
for (I bp = Bp[bi]; bp < Bp[bi + 1]; bp++

I bj = Bjlbpl;
for (I k = 0; k < R; k++
r (I 1=0; 1< C; 1++) {
I Bv_indx = bp * RC + k *x C + 1;
if (Bv[Bv_indx] != @
Av[Av_indx Bv[Bv_indx];
Ai[Av_indx bi x C + k;
Aj [Av_indx bj * R + 1;

Av_indx++;

Georgia
Tech



/root/cse6230-final-project/examples/amg/amg_test.cu:122: Failure
The difference between rho and rho_ref is 1, where
rho evaluates to 7,

() () ®
Validation of solution it
The abs_error parameter 1le-30 evaluates to 1.0000000000000001e-30 which is smaller th

an the minimum distance between doubles for numbers of this magnitude which is 8.8817
841970012523e-16, thus making this EXPECT_NEAR check equivalent to EXPECT_EQUAL. Cons
ider using EXPECT_DOUBLE_EQ instead.

test_CooArnoldiSpectralRadius.test_near_equal (137 ms)

1 test from test_CooArnoldiSpectralRadius (137 ms total)

» GoogleTest

* GoogleTest is Google's C++ testing and mocking | test from test Coupingonat
framework test_CooDiagonalttest_equal

test_CooDiagonal.test_equal (0 ms)
1 test from test_CooDiagonal (0 ms total)

2 tests from test_CooDiagonalInverse
test_CooDiagonallnverse.test_fail
Error: diagonal elements of A must be non-zero
test_CooDiagonalInverse.test_fail (0 ms)
test_CooDiagonalInverse.test_near_equal
test_CooDiagonalInverse.test_near_equal (0 ms)
rho = CooArnoldiSpectralRadius<I, VecI, VecT>(Ai, Aj, Av, 10); 2 tests from test_CooDiagonallnverse (0 ms total)

(test_CooArnoldiSpectralRadius, test_near_equal) {

1 test from test_TentativeProlongator

rho_ref = 7.e+00; test_TentativeProlongator.test_equal
test_TentativeProlongator.test_equal (0 ms)

1 test from test_TentativeProlongator (1 ms total)

rho, rho_ref, 1e-30);

1 test from test_CooSpMM
test_CooSpMM. test_equal
test_CooSpMM.test_equal (0 ms)

1 test from test_CooSpMM (0 ms total)

1 test from test_JacobiProlongationSmoother
test_JacobiProlongationSmoother.test_near_equal
test_JacobiProlongationSmoother.test_near_equal (0 ms)

1 test from test_JacobiProlongationSmoother (0 ms total)

Global test environment tear-down

9 tests from 7 test suites ran. (140 ms total)
8 tests.

1 test, listed below:
test_CooArnoldiSpectralRadius.test_near_equal

1 FAILED TEST



Test Bed

root@8e721a9leec4: /# lscpu

Architecture: Xx86_64
CPU op-mode(s): 32-bit, 64-bit

Byte Order: Little Endian Intel(R) Core(TM) i9-10980XE CPU

Address sizes: 46 bits physical, 48 bits virtual

CPU(s): 36 18 Core 36 threads
On-line CPU(s) Tlist: 0-35

Thread(s) per core: 2

Core(s) per socket: 18

Socket(s): 1

NUMA node(s): - root@8e72la9leec4:~# nvidia-smi --query-gpu=name --format=csv,noheader

Vendor ID: GenuineIntel NVIDIA GeForce RTX 3090

CPU family: 6 root@8e721a9leec4:~# nvidia-smi

eEals s _ Mon Mar 13 17:33:18 2023

Model name: Intel(R) Core(TM) i9-10980XE CPU @ 3.00GHz

NVIDIA-SMI 510.73.05 Driver Version: 510.73.05 CUDA Version: 11.

CUDA Version: 11.6

+
Persistence-M| Bus-Id | Volatile Uncorr. ECC
Temp Perf Pwr:Usage/Cap| | GPU-Util Compute M.
l
T I T T S T T T T S S S S S S S S S S S S - — —— T = —
NVIDIA GeForce ... 00000000:17:00.0 Off |
NVIDIA GeForce RTX 3090 34C P8  34W / 350W 19MiB / 24576MiB |
l
+

Processes:
GI



Results:

» Single CPU vs OpenMP vs GPU:Thrust
 For the case: n = 37281, nnz = 924385 (non-zero elements)

Method _________[Time(s)

np.linalg.solve 103.57
Single CPU 5.36431
OpenMP 1.45374
GPU:Thrust 0.456715

It is not possible to achieve 100% parallelization of the AMG algorithm.

Gr Georgia
Tech.



Result

Strong Scaling Breakdown: setup vs solve phase

Time vs Size of Problem

Time Breakdown

Time (s)
Time (s)

2—1-

215 216 217 218 219 220

37281 72369 142545 276705 545025
Size of Problem (n)

1081665
Size of Problem (n)

Setup phase have deeper parallelization on a GPU

Gr Georgia
Tech.



GPU-Accelerated Vortex
Particle Method (VPM)

Shreyas Ashok, Anand Radhakrishnan, Russell Newton



Introduction

Vortex particle method (VPM) is a
Computational Fluid Dynamics (CFD)
technique used to solve the Euler or
Navier-Stokes fluid equations of motion.
Lagrangian approach—track individual

particles of vorticity

o In contrast with traditional Eulerian approach -
discretize domain into a grid

We reproduced simple 2D VPM using
optimization techniques for single CPU
and single GPU

Vortex Particle Method used for
Multirotor Interaction Simulation

Alvarez, E. J., and Ning, A., "Development of a
Vortex Particle Code for the Modeling of Wake
Interaction in Distributed Propulsion,” AIAA
Applied Aerodynamics Conference, Atlanta, GA,
Jun. 2018. d0i:10.2514/6.2018-3646



Baseline and Performance Metrics

Baseline:

e Sequential N-Body simulation of Taylor-Green Vortex on CPU
e \alidated against analytical Taylor-Green Vortex solution

Performance Metrics

Time per step of simulation

Speedup versus baseline sequential CPU code

Accuracy to analytical solution

Accuracy of reduced-order problem versus full N-body solution



Baseline - Taylor Green Vortex

The Taylor-Green Vortex is an
analytical solution to the
Navier-Stokes equations

2D unsteady flow, periodic boundary

conditions

Simple boundary conditions and
known analytical solution make this
the perfect flow on which to test our

VPM code!

>

or Green Vortex Velocnty Field in Domain [0,2% p] (2D) '
L
-

[E
o+

1 2 3 4 5 6
X

Taylor-Green Vortex Visualization
(Reproduced from Wikipedia)
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Solution Video (link)




Validation of Solution

e VPM code represents expected behavior of
Taylor-Green Vortex well!

o  Velocity contours visualized with Paraview and compared to
known solution

e Dissipation rate is roughly in line with analytical

values, although not perfect
o  Plot on right shows U Velocity at selected measurement
point in domain

e |ssue we encountered: “particle volume”

o  This parameter was not well-defined in the literature we
used as reference to write the code; we probably have
implemented this slightly wrong

o Had to add a magic “multiplier value” of 0.1 to our particle
volume to achieve roughly correct dissipation rates

e Issues don’t affect HPC side of things

1.4 T T T T
N = 256
1.2 N =1024 | 1
Analytical
1
@
Eos
2
©
ke
£ 0.6
]
0.4
0.2
O 1 1 1 1
0 20 40 60 80 100
Time (s)



Solution

e Baseline solution: sequential code on CPU

e Accelerated solutions:

o  Originally wanted to try a distributed memory approach, but got complicated really fast
m Inraw form, VPM is an N-Body problem; a distributed memory approach of the raw form
would require all-to-all communication of all N particles — hugely impractical!

o To make VPM practical on distributed memory — need to reduce the order of the problem.

o Tree-code approach, which helps group particles together into clusters, reduces the problem
to O(NlogN).

o  On distributed memory system, theoretically possible to limit communication to higher
branches of the tree



Solution

e Baseline solution: sequential code on CPU

e Accelerated solutions:
o Implemented a tree code approach on CPU

o Implemented n-body problem on GPU
m It's great for doing simple things fast

o Attempted to implement the tree code on GPU
m In progress

o Did not achieve distributed memory solution in the time available; however, the code we
developed can serve as a base for a distributed implementation.



Tree Code

e Split the domain into quadrants
e Keep subdividing until each particle is in its own quadrant

e Subdivisions define a tree that can then be searched down
o Inner nodes contain the centroidal position and vorticity of all particles in
their children

e The approximation with inner nodes can be used instead of an
individual particle if (quadrant size) / (distance to centroid) <
(threshold)

e Changes the problem from quadratic time to loglinear time
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CPU Tree Code: Performance Results

e For larger particle numbers and larger groupings, tree code provides large
speedup.

e Overhead of building the tree is not worth it for small numbers of particles and
small opening angles (less clustering)
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CPU Tree Code: Accuracy Results

Tree approach is inherently an approximation of
the true N-body problem

Results show average particle position error
versus opening angle, as compared to full N-body
simulation.

o  How much accuracy did we lose because of the tree
approximation?

Opening Angle = 0.2 seems to be the limit at which
error starts to grow dramatically.

Around Opening Angle = 0.3, the simulation goes
unstable for higher particle counts.
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GPU Implementation (N-body problem)

GPU offloading via OpenACC with NVHPC 22 compiler

Simplify data structures to enable compiler optimizations

Struct-of-arrays preferred over Array-of-structs for GPUs

Nested parallelization with OpenACC gangs and vectors

Manual inlining of subroutines for higher speedups

~1000X speedup using V100 GPU over Xeon Gold CPU on PACE (Phoenix)
67.81% SM utilization for GPU kernel with N = 4096

Compute bound with large arithmetic intensity; 30% of Peak FLOPs

High L1 (77%) and L2 (99%) Cache hit rate



GPU speedups; NVIDIA V100 v/s Intel Xeon Gold (-O2)

N CPU (ms) GPU (ms) Speedup
256 2.45 0.02108 115
625 14.086 0.0386 365
1024 37.0801 0.07024 528
1600 88.8086 0.14184 627
2500 213.625 0.30168 708

4096 732.165 0.7404 990



GPU + Treecode

e Treecode data structures inherently sequential; not suitable for accelerators
e Need to conduct Depth-First Search (DFS) prior to GPU parallelization
e Current implementation does not warrant efficient utilization of GPUs

Alternate approach (work in progress)

e Rather than implement the full tree on GPUs, just implement a single level grid by
dividing the domain into a 16x16 region (note: decomposition amount is tunable).

e Assign one thread per region, loop through all N particles, and assign each one to a
box.

e Continue as per the tree code approach.

e This approach leads to less clustering efficiency due to there only being one level of
the tree, but may be more effective on GPUs due to better parallelization.

e Initial implementation is in progress—still working out some bugs...



Complications

e After getting a successful tree code implementation, we weren’t able to finish

a distributed approach

o How to keep each process from requiring access to the entire tree
o What does that communication look like?

e Compiler errors with nvhpc when trying to validate the GPU code
o Streams weren’t behaving correctly

e (etting the treecode to work on the GPU required a complete revamp of the
data structure
o Big array with integer indices to children
e Lots of segfaults



Testbeds

e GPU Computing Results conducted on Tesla V100 on Phoenix PACE cluster

e CPU results taken on Intel® Core™ i9-10980XE CPU @ 3.00GHz, on lab
workstation



Accuracy Errors

e \We used simple Euler first-order forward integration in time

o Runge-Kutta would have likely improved our results considerably
e The tree code seems to reduce overall energy dissipation

o Possible our approximation of vorticity at cell center of mass is slightly off
e Papers we found didn’t explain a few things very well:

o Particle mass and volume
o We had to introduce a fudge factor for initial vorticity
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Motivation: Data-Driven Catalyst Discovery Workflow
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Project

— 1. Graph Algorithms on Kokkos

2. Distributed Non-uniform hypergraph clustering

3. Comparing graph partitioning using patoh, metis and Zoltan

4. Accelerating Non-negative Matrix and Tensor Factorizations in PLANC

O rigi n a | i d ea fro m P i a Zza _ 5. ChatGPT for HPC programming — github copilot

6. Mixed Precision Deep Networks Training

7. Distributed-memory stencil computations for scientific computing applications
post on 03/08/23 v 9

8. Parallel iterative solvers for sparse linear systems
9. Distributed Hyperparameter search for Deep Learning

- 10. Negative sampling for distributed GNN training

Project Type: | will integrate distributed hyperparameter
search algorithms into training of ML potentials relevant to data-
driven catalyst discovery workflows
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Problem Statement

Problem: Depending on the search space, search algorithms
for hyperparameter tuning can be

(from hours to days). State-of-the-art packages for training of
ML potentials (e.g., SchNetPack, AMPTorch, etc.) do not
support distributed hyperparameter tuning.

[Solution: Distributed Hyperparameter Search J
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Implemented Algorithms

1. Grid Search: classical example
and very easy to distribute (no
dependency between tasks). No
communication, each NN is trained
to convergence and best set is
selected
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Implemented Algorithms

2. Population Based Training (PBT): originally proposed by
Jaderberg et. Al (2017). Similar to EA

Algorithm 1 Population Based Training (PBT)

1: procedure TRAIN(P) > initial population P
2 for (0, h, p, t) € P (asynchronously in parallel) do

3: while not end of training do
4: 6 < step(0|h) > one step of optimisation using hyperparameters h
5 p < eval(f) > current model evaluation
6: if ready(p, t, P) then
7 h',0" < exploit(h,8,p,P) > use the rest of population to find better solution
8: if 0 # 0’ then
9: h, 0 < explore(h’,0',P) > produce new hyperparameters h
10: p < eval(f) > new model evaluation
11; end if
12 end if
13: update P with new (0, h,p,t + 1) > update population
14: end while
15: end for

16: return 6 with the highest p in P
17: end procedure

CSE6320:



Experiments

[ Dataset J

Open Catalyst 2020 (OC20), dataset
of catalysis DFT calculations

Small chunk of it. Full dataset has
millions of data points which is not
feasible given resource constraints

[ Testbed J

 Ray AWS Cluster

Open Catalyst 2020 (OC20) Dataset
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1. ACSF Calculations GPU Acceleration (attempt)

ACSF Calculation

0.0007 A

0.0006 A
Natom

Gi2 = z eRif'ch (Rij) Hyperparameters 000059

0.0004 A

0.0003 A

Elapsed Time (s)

j=1
Gi4 = 21 Z [(1 +|y|cos Hijkﬂ_n(RﬁRi_‘_Rﬁ‘ )fc (sz)

jik 0.0002 -
fc (Rik) fc (Rjk)] 0.0001 -

0.0000 -

CPU CUDA

Not really expected to work just by looking at equations, computation is not
linear algebra heavy (tensors are small, NXN where typically N < 100)
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2. Grid Search Results
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Distributed Hyperparameter Tuning is embarrassingly parallel by nature
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3, PBT ReSU‘tS Validation (correctness)
\
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Distributed Hyperparameter Tuning is embarrassingly parallel by nature
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4. Generative Model Performance

Grid Search for GFlowNet

# of High Reward Samples after 5k episodes

4,2 4,3 6,2 6,3 8,2 8,3
Hyperparameters (nheads, nhid)

Scaling obvious by now (+ expensive in this case), focus on “performance” improvement
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