
ORNL is managed by UT-Battelle LLC
for the US Department of Energy

A Short Introduction to Kokkos

Damien Lebrun-Grandié

GATech Spring 2023 2/67

The Fundamentals

A Condensed Short Tutorial

This lecture covers fundamental concepts of Kokkos with
Hands-On Exercises as homework.
Slides: https://github.com/kokkos/kokkos-tutorials/
Intro-Short/KokkosTutorial_Short.pdf

For the full lectures, with more capabilities covered, and more
in-depth explanations visit:
https://github.com/kokkos/kokkos-tutorials/wiki/

Kokkos-Lecture-Series

https://github.com/kokkos/kokkos-tutorials/Intro-Short/KokkosTutorial_Short.pdf
https://github.com/kokkos/kokkos-tutorials/Intro-Short/KokkosTutorial_Short.pdf
https://github.com/kokkos/kokkos-tutorials/wiki/Kokkos-Lecture-Series
https://github.com/kokkos/kokkos-tutorials/wiki/Kokkos-Lecture-Series

GATech Spring 2023 3/67

The HPC Hardware Landscape

(a) Initially not working. Now more robust for Fortran than C++, but getting better.
(b) Research e↵ort.
(c) OpenMP 5 by NVIDIA.
(d) OpenMP 5 by HPE.

(e) OpenMP 5 by Intel.

GATech Spring 2023 4/67

Cost of Coding

Industry Estimate

A full time software engineer writes 10 lines of production code per
hour: 20k LOC/year.

I Typical HPC production app: 300k-600k lines
I Sandia alone maintains a few dozen

I Large Scientific Libraries:
I E3SM: 1,000k lines
I Trilinos: 4,000k lines

Conservative estimate: need to rewrite 10% of an app to switch
Programming Model

Software Cost Switching Vendors

Just switching Programming Models costs multiple person-years
per app!

GATech Spring 2023 4/67

Cost of Coding

Industry Estimate

A full time software engineer writes 10 lines of production code per
hour: 20k LOC/year.

I Typical HPC production app: 300k-600k lines
I Sandia alone maintains a few dozen

I Large Scientific Libraries:
I E3SM: 1,000k lines
I Trilinos: 4,000k lines

Conservative estimate: need to rewrite 10% of an app to switch
Programming Model

Software Cost Switching Vendors

Just switching Programming Models costs multiple person-years
per app!

GATech Spring 2023 5/67

What is Kokkos?

I A C++ Programming Model for Performance Portability
I Implemented as a template library on top CUDA, HIP,

OpenMP, ...
I Aims to be descriptive not prescriptive
I Aligns with developments in the C++ standard

I Expanding solution for common needs of modern science and
engineering codes
I Math libraries based on Kokkos
I Tools for debugging, profiling and tuning
I Utilities for integration with Fortran and Python

I Is is an Open Source project with a growing community
I Maintained and developed at https://github.com/kokkos
I Hundreds of users at many large institutions

https://github.com/kokkos

GATech Spring 2023 6/67

Kokkos at the Center

GATech Spring 2023 7/67

The Kokkos EcoSystem

GATech Spring 2023 8/67

The Kokkos Team

Kokkos Core: C. Trott, D. Lebrun-Grandié, D. Arndt, J. Bludau, J. Ciesko, V. Dang,
N. Ellingwood, R. Gayatri, D. Ibanez, V. Kale, N. Liber, P. Miller, N.
Morales, A. Powell, F. Rizzi, C. Skrzyński, B. Turcksin
former: H.C. Edwards, D. Labreche, G. Mackey, S. Bova, D. Sun-
derland, D.S. Hollman, J. Miles, J. Wilke, J. Madsen, D. Poliako↵, C.
Lewis, H. Finkel

Kokkos Kernels: S. Rajamanickam, L. Berger-Vergiat, V. Dang, N. Ellingwood, J.
Foucar, E. Harvey, B. Kelley, K. Kim, J. Loe, C. Pearson
former: J. Wilke, S. Acer

GATech Spring 2023 9/67

Kokkos and the C++ Standard

Kokkos helps improve ISO C++

Ten current or former Kokkos team members are members of the

ISO C++ standard committee.

GATech Spring 2023 10/67

Kokkos Users

Kokkos has a growing OpenSource Community

I 20 ECP projects list Kokkos as Critical Dependency
I 41 list C++ as critical
I 25 list Lapack as critical
I 21 list Fortran as critical

I Slack Channel: 900 members from 90+ institutions
I 15% Sandia Nat. Lab.
I 24% other US Labs
I 22% universities
I 39% other

I GitHub: 1.1k stars

GATech Spring 2023 11/67

Welcome to Kokkos

Online Resources:
I https://github.com/kokkos:

I Primary Kokkos GitHub Organization

I https://github.com/kokkos/kokkos-tutorials/wiki/
Kokkos-Lecture-Series:
I Slides, recording and Q&A for the Full Lectures

I https://github.com/kokkos/kokkos/wiki:
I Wiki including API reference

I https://kokkosteam.slack.com:
I Slack channel for Kokkos.
I Please join: fastest way to get your questions answered.
I Can whitelist domains, or invite individual people.

https://github.com/kokkos
https://github.com/kokkos/kokkos-tutorials/wiki/Kokkos-Lecture-Series
https://github.com/kokkos/kokkos-tutorials/wiki/Kokkos-Lecture-Series
https://github.com/kokkos/kokkos/wiki
https://kokkosteam.slack.com

GATech Spring 2023 12/67

Data parallel patterns

Learning objectives:

I How computational bodies are passed to the Kokkos runtime.

I How work is mapped to execution resources.

I The di↵erence between parallel for and
parallel reduce.

I Start parallelizing a simple example.

GATech Spring 2023 13/67

Using Kokkos for data parallel patterns (0)

Data parallel patterns and work

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex) {
atomForces[atomIndex] = calculateForce (... data ...);

}

Kokkos maps work to execution resources

I each iteration of a computational body is a unit of work.

I an iteration index identifies a particular unit of work.

I an iteration range identifies a total amount of work.

Important concept: Work mapping

You give an iteration range and computational body (kernel)
to Kokkos, and Kokkos decides how to map that work to execution
resources.

GATech Spring 2023 13/67

Using Kokkos for data parallel patterns (0)

Data parallel patterns and work

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex) {
atomForces[atomIndex] = calculateForce (... data ...);

}

Kokkos maps work to execution resources

I each iteration of a computational body is a unit of work.

I an iteration index identifies a particular unit of work.

I an iteration range identifies a total amount of work.

Important concept: Work mapping

You give an iteration range and computational body (kernel)
to Kokkos, and Kokkos decides how to map that work to execution
resources.

GATech Spring 2023 13/67

Using Kokkos for data parallel patterns (0)

Data parallel patterns and work

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex) {
atomForces[atomIndex] = calculateForce (... data ...);

}

Kokkos maps work to execution resources

I each iteration of a computational body is a unit of work.

I an iteration index identifies a particular unit of work.

I an iteration range identifies a total amount of work.

Important concept: Work mapping

You give an iteration range and computational body (kernel)
to Kokkos, and Kokkos decides how to map that work to execution
resources.

GATech Spring 2023 14/67

Using Kokkos for data parallel patterns (2)

How are computational bodies given to Kokkos?

As functors or function objects, a common pattern in C++.

Quick review, a functor is a function with data. Example:
struct ParallelFunctor {

...
void operator ()(a work assignment) const {

/* ... computational body ... */
...

};

GATech Spring 2023 14/67

Using Kokkos for data parallel patterns (2)

How are computational bodies given to Kokkos?

As functors or function objects, a common pattern in C++.

Quick review, a functor is a function with data. Example:
struct ParallelFunctor {

...
void operator ()(a work assignment) const {

/* ... computational body ... */
...

};

GATech Spring 2023 14/67

Using Kokkos for data parallel patterns (2)

How are computational bodies given to Kokkos?

As functors or function objects, a common pattern in C++.

Quick review, a functor is a function with data. Example:
struct ParallelFunctor {

...
void operator ()(a work assignment) const {

/* ... computational body ... */
...

};

GATech Spring 2023 15/67

Using Kokkos for data parallel patterns (3)

How is work assigned to functor operators?

A total amount of work items is given to a Kokkos pattern,
ParallelFunctor functor;
Kokkos :: parallel_for(numberOfIterations , functor);

and work items are assigned to functors one-by-one:
struct Functor {

void operator ()(const int64_t index) const {...}
}

Warning: concurrency and order

Concurrency and ordering of parallel iterations is not guaranteed
by the Kokkos runtime.

GATech Spring 2023 15/67

Using Kokkos for data parallel patterns (3)

How is work assigned to functor operators?

A total amount of work items is given to a Kokkos pattern,
ParallelFunctor functor;
Kokkos :: parallel_for(numberOfIterations , functor);

and work items are assigned to functors one-by-one:
struct Functor {

void operator ()(const int64_t index) const {...}
}

Warning: concurrency and order

Concurrency and ordering of parallel iterations is not guaranteed
by the Kokkos runtime.

GATech Spring 2023 15/67

Using Kokkos for data parallel patterns (3)

How is work assigned to functor operators?

A total amount of work items is given to a Kokkos pattern,
ParallelFunctor functor;
Kokkos :: parallel_for(numberOfIterations , functor);

and work items are assigned to functors one-by-one:
struct Functor {

void operator ()(const int64_t index) const {...}
}

Warning: concurrency and order

Concurrency and ordering of parallel iterations is not guaranteed
by the Kokkos runtime.

GATech Spring 2023 15/67

Using Kokkos for data parallel patterns (3)

How is work assigned to functor operators?

A total amount of work items is given to a Kokkos pattern,
ParallelFunctor functor;
Kokkos :: parallel_for(numberOfIterations , functor);

and work items are assigned to functors one-by-one:
struct Functor {

void operator ()(const int64_t index) const {...}
}

Warning: concurrency and order

Concurrency and ordering of parallel iterations is not guaranteed
by the Kokkos runtime.

GATech Spring 2023 16/67

Using Kokkos for data parallel patterns (6)

The complete picture (using functors):

1. Defining the functor (operator+data):

struct AtomForceFunctor {
ForceType _atomForces;
AtomDataType _atomData;

AtomForceFunctor(ForceType atomForces , AtomDataType data) :
_atomForces(atomForces), _atomData(data) {}

void operator ()(const int64_t atomIndex) const {
_atomForces[atomIndex] = calculateForce(_atomData);

}
}

2. Executing in parallel with Kokkos pattern:
AtomForceFunctor functor(atomForces , data);
Kokkos :: parallel_for(numberOfAtoms , functor);

GATech Spring 2023 17/67

Using Kokkos for data parallel patterns (7)

Functors are tedious) C++11 Lambdas are concise

atomForces already exists
data already exists
Kokkos :: parallel_for(numberOfAtoms ,

[=] (const int64_t atomIndex) {
atomForces[atomIndex] = calculateForce(data);

}
);

A lambda is not magic, it is the compiler auto-generating a
functor for you.

Warning: Lambda capture and C++ containers

For portability to GPU a lambda must capture by value [=].
Don’t capture containers (e.g., std::vector) by value because it will
copy the container’s entire contents.

GATech Spring 2023 17/67

Using Kokkos for data parallel patterns (7)

Functors are tedious) C++11 Lambdas are concise

atomForces already exists
data already exists
Kokkos :: parallel_for(numberOfAtoms ,

[=] (const int64_t atomIndex) {
atomForces[atomIndex] = calculateForce(data);

}
);

A lambda is not magic, it is the compiler auto-generating a
functor for you.

Warning: Lambda capture and C++ containers

For portability to GPU a lambda must capture by value [=].
Don’t capture containers (e.g., std::vector) by value because it will
copy the container’s entire contents.

GATech Spring 2023 17/67

Using Kokkos for data parallel patterns (7)

Functors are tedious) C++11 Lambdas are concise

atomForces already exists
data already exists
Kokkos :: parallel_for(numberOfAtoms ,

[=] (const int64_t atomIndex) {
atomForces[atomIndex] = calculateForce(data);

}
);

A lambda is not magic, it is the compiler auto-generating a
functor for you.

Warning: Lambda capture and C++ containers

For portability to GPU a lambda must capture by value [=].
Don’t capture containers (e.g., std::vector) by value because it will
copy the container’s entire contents.

GATech Spring 2023 18/67

parallel for examples

How does this compare to OpenMP?

for (int64_t i = 0; i < N; ++i) {
/* loop body */

}

#pragma omp parallel for
for (int64_t i = 0; i < N; ++i) {

/* loop body */
}

parallel_for(N, [=] (const int64_t i) {
/* loop body */

});

Important concept

Simple Kokkos usage is no more conceptually di�cult than
OpenMP, the annotations just go in di↵erent places.

S
er
ia
l

O
p
en

M
P

K
o
kk

o
s

GATech Spring 2023 19/67

Scalar integration (0)

Riemann-sum-style numerical integration:

y =

Z upper

lower
function(x) dx

Wikipedia

GATech Spring 2023 19/67

Scalar integration (0)

Riemann-sum-style numerical integration:

y =

Z upper

lower
function(x) dx

Wikipedia

double totalIntegral = 0;
for (int64_t i = 0; i < numberOfIntervals; ++i) {

const double x =
lower + (i/numberOfIntervals) * (upper - lower);

const double thisIntervalsContribution = function(x);
totalIntegral += thisIntervalsContribution;

}
totalIntegral *= dx;

GATech Spring 2023 19/67

Scalar integration (0)

Riemann-sum-style numerical integration:

y =

Z upper

lower
function(x) dx

Wikipedia

double totalIntegral = 0;
for (int64_t i = 0; i < numberOfIntervals; ++i) {

const double x =
lower + (i/numberOfIntervals) * (upper - lower);

const double thisIntervalsContribution = function(x);
totalIntegral += thisIntervalsContribution;

}
totalIntegral *= dx;

How do we parallelize it? Correctly?

GATech Spring 2023 19/67

Scalar integration (0)

Riemann-sum-style numerical integration:

y =

Z upper

lower
function(x) dx

Wikipedia

double totalIntegral = 0;
for (int64_t i = 0; i < numberOfIntervals; ++i) {

const double x =
lower + (i/numberOfIntervals) * (upper - lower);

const double thisIntervalsContribution = function(x);
totalIntegral += thisIntervalsContribution;

}
totalIntegral *= dx;

How do we parallelize it? Correctly?

Pattern?
Policy?

B
o
dy

?

GATech Spring 2023 20/67

Scalar integration (1)

An (incorrect) attempt:

double totalIntegral = 0;
Kokkos :: parallel_for(numberOfIntervals ,

[=] (const int64_t index) {
const double x =

lower + (index/numberOfIntervals) * (upper - lower);
totalIntegral += function(x);},

);
totalIntegral *= dx;

First problem: compiler error; cannot increment totalIntegral
(lambdas capture by value and are treated as const!)

GATech Spring 2023 21/67

Scalar integration (2)

An (incorrect) solution to the (incorrect) attempt:

double totalIntegral = 0;
double * totalIntegralPointer = &totalIntegral;
Kokkos :: parallel_for(numberOfIntervals ,

[=] (const int64_t index) {
const double x =

lower + (index/numberOfIntervals) * (upper - lower);
*totalIntegralPointer += function(x);},

);
totalIntegral *= dx;

Second problem: race condition

step thread 0 thread 1
0 load
1 increment load
2 write increment
3 write

GATech Spring 2023 21/67

Scalar integration (2)

An (incorrect) solution to the (incorrect) attempt:

double totalIntegral = 0;
double * totalIntegralPointer = &totalIntegral;
Kokkos :: parallel_for(numberOfIntervals ,

[=] (const int64_t index) {
const double x =

lower + (index/numberOfIntervals) * (upper - lower);
*totalIntegralPointer += function(x);},

);
totalIntegral *= dx;

Second problem: race condition

step thread 0 thread 1
0 load
1 increment load
2 write increment
3 write

GATech Spring 2023 22/67

Scalar integration (3)

Root problem: we’re using the wrong pattern, for instead of
reduction

Important concept: Reduction

Reductions combine the results contributed by parallel work.

How would we do this with OpenMP?
double finalReducedValue = 0;
#pragma omp parallel for reduction(+: finalReducedValue)
for (int64_t i = 0; i < N; ++i) {

finalReducedValue += ...
}

How will we do this with Kokkos?
double finalReducedValue = 0;
parallel_reduce(N, functor , finalReducedValue);

GATech Spring 2023 22/67

Scalar integration (3)

Root problem: we’re using the wrong pattern, for instead of
reduction

Important concept: Reduction

Reductions combine the results contributed by parallel work.

How would we do this with OpenMP?
double finalReducedValue = 0;
#pragma omp parallel for reduction(+: finalReducedValue)
for (int64_t i = 0; i < N; ++i) {

finalReducedValue += ...
}

How will we do this with Kokkos?
double finalReducedValue = 0;
parallel_reduce(N, functor , finalReducedValue);

GATech Spring 2023 22/67

Scalar integration (3)

Root problem: we’re using the wrong pattern, for instead of
reduction

Important concept: Reduction

Reductions combine the results contributed by parallel work.

How would we do this with OpenMP?
double finalReducedValue = 0;
#pragma omp parallel for reduction(+: finalReducedValue)
for (int64_t i = 0; i < N; ++i) {

finalReducedValue += ...
}

How will we do this with Kokkos?
double finalReducedValue = 0;
parallel_reduce(N, functor , finalReducedValue);

GATech Spring 2023 22/67

Scalar integration (3)

Root problem: we’re using the wrong pattern, for instead of
reduction

Important concept: Reduction

Reductions combine the results contributed by parallel work.

How would we do this with OpenMP?
double finalReducedValue = 0;
#pragma omp parallel for reduction(+: finalReducedValue)
for (int64_t i = 0; i < N; ++i) {

finalReducedValue += ...
}

How will we do this with Kokkos?
double finalReducedValue = 0;
parallel_reduce(N, functor , finalReducedValue);

GATech Spring 2023 23/67

Scalar integration (4)

Example: Scalar integration

double totalIntegral = 0;
#pragma omp parallel for reduction(+: totalIntegral)
for (int64_t i = 0; i < numberOfIntervals; ++i) {

totalIntegral += function (...);
}

double totalIntegral = 0;
parallel_reduce(numberOfIntervals ,

[=] (const int64_t i, double & valueToUpdate) {
valueToUpdate += function (...);

},
totalIntegral);

I The operator takes two arguments: a work index and a value
to update.

I The second argument is a thread-private value that is
managed by Kokkos; it is not the final reduced value.

O
p
en

M
P

K
o
kk

o
s

GATech Spring 2023 24/67

Naming your kernels

Always name your kernels!

Giving unique names to each kernel is immensely helpful for
debugging and profiling. You will regret it if you don’t!

I Non-nested parallel patterns can take an optional string
argument.

I The label doesn’t need to be unique, but it is helpful.

I Anything convertible to ”std::string”

I Used by profiling and debugging tools (see Profiling Tutorial)

Example:
double totalIntegral = 0;
parallel_reduce("Reduction",numberOfIntervals ,

[=] (const int64_t i, double & valueToUpdate) {
valueToUpdate += function (...);

},
totalIntegral);

GATech Spring 2023 25/67

Recurring Exercise: Inner Product

Exercise: Inner product < y ,A ⇤ x >

Details:

I y is Nx1, A is NxM, x is Mx1

I We’ll use this exercise throughout the tutorial

GATech Spring 2023 26/67

Exercise #1: include, initialize, finalize Kokkos

The first step in using Kokkos is to include, initialize, and finalize:

#include <Kokkos_Core.hpp >
int main(int argc , char* argv []) {

/* ... do any necessary setup (e.g., initialize MPI) ... */
Kokkos :: initialize(argc , argv);
{
/* ... do computations ... */
}
Kokkos :: finalize ();
return 0;

}

(Optional) Command-line arguments or environment variables:

--kokkos-num-threads=INT or
KOKKOS NUM THREADS

total number of threads

--kokkos-device-id=INT or
KOKKOS DEVICE ID

device (GPU) ID to use

GATech Spring 2023 27/67

Exercise #1: Inner Product, Flat Parallelism on the CPU

Exercise: Inner product < y ,A ⇤ x >

Details:

I Location: Exercises/01/Begin/

I Look for comments labeled with “EXERCISE”

I Need to include, initialize, and finalize Kokkos library

I Parallelize loops with parallel for or parallel reduce

I Use lambdas instead of functors for computational bodies.

I For now, this will only use the CPU.

GATech Spring 2023 28/67

Exercise #1: logistics

Compiling for CPU
gcc using OpenMP (default) and Serial back -ends ,
(optional) change non -default arch with KOKKOS_ARCH

make -j KOKKOS_DEVICES=OpenMP ,Serial KOKKOS_ARCH =...

Running on CPU with OpenMP back-end

Set OpenMP affinity
export OMP_NUM_THREADS =8
export OMP_PROC_BIND=spread OMP_PLACES=threads
Print example command line options:
./01 _Exercise.host -h
Run with defaults on CPU
./01 _Exercise.host
Run larger problem
./01 _Exercise.host -S 26

Things to try:

I Vary problem size with cline arg -S s

I Vary number of rows with cline arg -N n

I Num rows = 2n, num cols = 2m, total size = 2s == 2n+m

GATech Spring 2023 29/67

Exercise #1 results

 0

 50

 100

 150

 200

 250

 300

 350

 1 10 100 1000 10000 100000 1x106 1x107 1x108 1x109

Ba
nd

w
id

th
 (G

B/
s)

Number of Rows (N)

<y,Ax> Exercise 01, Fixed Size
HSW
KNL
KNL (HBM)

GATech Spring 2023 30/67

Section Summary

I Simple usage is similar to OpenMP, advanced features are
also straightforward

I Three common data-parallel patterns are parallel for,
parallel reduce, and parallel scan.

I A parallel computation is characterized by its pattern, policy,
and body.

I User provides computational bodies as functors or lambdas
which handle a single work item.

GATech Spring 2023 31/67

Views

Learning objectives:

I Motivation behind the View abstraction.

I Key View concepts and template parameters.

I The View life cycle.

GATech Spring 2023 32/67

View motivation

Example: running daxpy on the GPU:

double * x = new double[N]; // also y
parallel_for("DAXPY",N, [=] (const int64_t i) {

y[i] = a * x[i] + y[i];
});

struct Functor {
double *_x , *_y, a;
void operator ()(const int64_t i) const {

_y[i] = _a * _x[i] + _y[i];
}

};

Problem: x and y reside in CPU memory.

Solution: We need a way of storing data (multidimensional arrays)
which can be communicated to an accelerator (GPU).

) Views

L
am

b
d
a

F
u
n
ct
or

GATech Spring 2023 32/67

View motivation

Example: running daxpy on the GPU:

double * x = new double[N]; // also y
parallel_for("DAXPY",N, [=] (const int64_t i) {

y[i] = a * x[i] + y[i];
});

struct Functor {
double *_x , *_y, a;
void operator ()(const int64_t i) const {

_y[i] = _a * _x[i] + _y[i];
}

};

Problem: x and y reside in CPU memory.

Solution: We need a way of storing data (multidimensional arrays)
which can be communicated to an accelerator (GPU).

) Views

L
am

b
d
a

F
u
n
ct
or

GATech Spring 2023 32/67

View motivation

Example: running daxpy on the GPU:

double * x = new double[N]; // also y
parallel_for("DAXPY",N, [=] (const int64_t i) {

y[i] = a * x[i] + y[i];
});

struct Functor {
double *_x , *_y, a;
void operator ()(const int64_t i) const {

_y[i] = _a * _x[i] + _y[i];
}

};

Problem: x and y reside in CPU memory.

Solution: We need a way of storing data (multidimensional arrays)
which can be communicated to an accelerator (GPU).

) Views

L
am

b
d
a

F
u
n
ct
or

GATech Spring 2023 33/67

Views (0)

View abstraction

I A lightweight C++ class with a pointer to array data and a
little meta-data,

I that is templated on the data type (and other things).

High-level example of Views for daxpy using lambda:

View <double*, ...> x(...) , y(...);
... populate x, y...

parallel_for("DAXPY",N, [=] (const int64_t i) {
// Views x and y are captured by value (shallow copy)
y(i) = a * x(i) + y(i);

});

Important point

Views are like pointers, so copy them in your functors.

GATech Spring 2023 33/67

Views (0)

View abstraction

I A lightweight C++ class with a pointer to array data and a
little meta-data,

I that is templated on the data type (and other things).

High-level example of Views for daxpy using lambda:

View <double*, ...> x(...) , y(...);
... populate x, y...

parallel_for("DAXPY",N, [=] (const int64_t i) {
// Views x and y are captured by value (shallow copy)
y(i) = a * x(i) + y(i);

});

Important point

Views are like pointers, so copy them in your functors.

GATech Spring 2023 34/67

Views (1)

View overview:

I Multi-dimensional array of 0 or more dimensions
scalar (0), vector (1), matrix (2), etc.

I Number of dimensions (rank) is fixed at compile-time.

I Arrays are rectangular, not ragged.

I Sizes of dimensions set at compile-time or runtime.
e.g., 2x20, 50x50, etc.

I Access elements via ”(...)” operator.

Example:

View <double ***> data("label", N0 , N1, N2); //3 run, 0 compile
View <double **[N2]> data("label", N0 , N1); //2 run, 1 compile
View <double *[N1][N2]> data("label", N0); //1 run, 2 compile
View <double[N0][N1][N2]> data("label"); //0 run, 3 compile
// Access
data(i,j,k) = 5.3;

Note: runtime-sized dimensions must come first.

GATech Spring 2023 34/67

Views (1)

View overview:

I Multi-dimensional array of 0 or more dimensions
scalar (0), vector (1), matrix (2), etc.

I Number of dimensions (rank) is fixed at compile-time.

I Arrays are rectangular, not ragged.

I Sizes of dimensions set at compile-time or runtime.
e.g., 2x20, 50x50, etc.

I Access elements via ”(...)” operator.
Example:

View <double ***> data("label", N0 , N1, N2); //3 run, 0 compile
View <double **[N2]> data("label", N0, N1); //2 run, 1 compile
View <double *[N1][N2]> data("label", N0); //1 run, 2 compile
View <double[N0][N1][N2]> data("label"); //0 run, 3 compile
// Access
data(i,j,k) = 5.3;

Note: runtime-sized dimensions must come first.

GATech Spring 2023 35/67

Views (2)

View life cycle:

I Allocations only happen when explicitly specified.
i.e., there are no hidden allocations.

I Copy construction and assignment are shallow (like pointers).
so, you pass Views by value, not by reference

I Reference counting is used for automatic deallocation.

I They behave like std::shared ptr

Example:
View <double *[5]> a("a", N), b("b", K);
a = b;
View <double**> c(b);
a(0,2) = 1;
b(0,2) = 2;
c(0,2) = 3;
print_value(a(0,2));

What gets printed?
3.0

GATech Spring 2023 35/67

Views (2)

View life cycle:

I Allocations only happen when explicitly specified.
i.e., there are no hidden allocations.

I Copy construction and assignment are shallow (like pointers).
so, you pass Views by value, not by reference

I Reference counting is used for automatic deallocation.

I They behave like std::shared ptr

Example:
View <double *[5]> a("a", N), b("b", K);
a = b;
View <double**> c(b);
a(0,2) = 1;
b(0,2) = 2;
c(0,2) = 3;
print_value(a(0,2));

What gets printed?

3.0

GATech Spring 2023 35/67

Views (2)

View life cycle:

I Allocations only happen when explicitly specified.
i.e., there are no hidden allocations.

I Copy construction and assignment are shallow (like pointers).
so, you pass Views by value, not by reference

I Reference counting is used for automatic deallocation.

I They behave like std::shared ptr

Example:
View <double *[5]> a("a", N), b("b", K);
a = b;
View <double**> c(b);
a(0,2) = 1;
b(0,2) = 2;
c(0,2) = 3;
print_value(a(0,2));

What gets printed?
3.0

GATech Spring 2023 36/67

Views (3)

View Properties:
I Accessing a View’s sizes is done via its extent(dim)

function.
I Static extents can additionally be accessed via

static extent(dim).

I You can retrieve a raw pointer via its data() function.

I The label can be accessed via label().

Example:

View <double *[5]> a("A",N0);
assert(a.extent (0) == N0);
assert(a.extent (1) == 5);
static_assert(a.static_extent (1) == 5);
assert(a.data() != nullptr);
assert(a.label () == "A");

GATech Spring 2023 37/67

Exercise #2: Inner Product, Flat Parallelism on the CPU, with Views

I Location: Exercises/02/Begin/

I Assignment: Change data storage from arrays to Views.

I Compile and run on CPU, and then on GPU with UVM

make -j KOKKOS_DEVICES=OpenMP # CPU -only using OpenMP
make -j KOKKOS_DEVICES=Cuda # GPU - note UVM in Makefile
Run exercise
./02 _Exercise.host -S 26
./02 _Exercise.cuda -S 26
Note the warnings , set appropriate environment variables

I Vary problem size: -S #

I Vary number of rows: -N #

I Vary repeats: -nrepeat #

I Compare performance of CPU vs GPU

GATech Spring 2023 38/67

Execution spaces (1)

Execution Space
a homogeneous set of cores and an execution mechanism

(i.e., “place to run code”)

DRAM

NVRAM

On-Package
Memory

Network-on-Chip

Core Core

External Network
Interface

...

Core Core...

Acc.
On-Package

Memory

External Interconnect

Node

NUMA Domain

NUMA Domain

Accelerator

Execution spaces: Serial, Threads, OpenMP, Cuda, HIP, ...

GATech Spring 2023 39/67

Execution spaces (3)

Changing the parallel execution space:

parallel_for("Label",
RangePolicy < Execut ionSpace >(0, numberOfIntervals),
[=] (const int64_t i) {

/* ... body ... */
});

parallel_for("Label",
numberOfIntervals , // => RangePolicy <>(0, numberOfIntervals)
[=] (const int64_t i) {

/* ... body ... */
});

Requirements for enabling execution spaces:
I Kokkos must be compiled with the execution spaces enabled.

I Execution spaces must be initialized (and finalized).

I Functions must be marked with a macro for non-CPU spaces.

I Lambdas must be marked with a macro for non-CPU spaces.

D
ef
au

lt
C
u
st
o
m

GATech Spring 2023 39/67

Execution spaces (3)

Changing the parallel execution space:

parallel_for("Label",
RangePolicy < Execut ionSpace >(0, numberOfIntervals),
[=] (const int64_t i) {

/* ... body ... */
});

parallel_for("Label",
numberOfIntervals , // => RangePolicy <>(0, numberOfIntervals)
[=] (const int64_t i) {

/* ... body ... */
});

Requirements for enabling execution spaces:
I Kokkos must be compiled with the execution spaces enabled.

I Execution spaces must be initialized (and finalized).

I Functions must be marked with a macro for non-CPU spaces.

I Lambdas must be marked with a macro for non-CPU spaces.

D
ef
au

lt
C
u
st
o
m

GATech Spring 2023 40/67

Execution spaces (5)

Kokkos function and lambda portability annotation macros:

Function annotation with KOKKOS INLINE FUNCTION macro
s t r u c t P a r a l l e l F u n c t o r {

KOKKOS INLINE FUNCTION
doub l e h e l p e r F un c t i o n (con s t i n t 6 4 t s) con s t { . . .}
KOKKOS INLINE FUNCTION
vo i d op e r a t o r () (con s t i n t 6 4 t i nd ex) con s t {

h e l p e r F un c t i o n (i nd ex) ;
}

}
// Where kokkos d e f i n e s :
#d e f i n e KOKKOS INLINE FUNCTION i n l i n e /∗ #i f CPU−on l y ∗/
#d e f i n e KOKKOS INLINE FUNCTION i n l i n e d e v i c e h o s t /∗ #i f CPU+Cuda ∗/

Lambda annotation with KOKKOS LAMBDA macro
Kokkos : : p a r a l l e l f o r (” Labe l ” , numbe rO f I t e r a t i on s ,

KOKKOS LAMBDA (cons t i n t 6 4 t i nd ex) { . . . }) ;

// Where Kokkos d e f i n e s :
#d e f i n e KOKKOS LAMBDA [=] /∗ #i f CPU−on l y ∗/
#d e f i n e KOKKOS LAMBDA [=] d e v i c e h o s t /∗ #i f CPU+Cuda ∗/

GATech Spring 2023 40/67

Execution spaces (5)

Kokkos function and lambda portability annotation macros:

Function annotation with KOKKOS INLINE FUNCTION macro
s t r u c t P a r a l l e l F u n c t o r {

KOKKOS INLINE FUNCTION
doub l e h e l p e r F un c t i o n (con s t i n t 6 4 t s) con s t { . . .}
KOKKOS INLINE FUNCTION
vo i d op e r a t o r () (con s t i n t 6 4 t i nd ex) con s t {

h e l p e r F un c t i o n (i nd ex) ;
}

}
// Where kokkos d e f i n e s :
#d e f i n e KOKKOS INLINE FUNCTION i n l i n e /∗ #i f CPU−on l y ∗/
#d e f i n e KOKKOS INLINE FUNCTION i n l i n e d e v i c e h o s t /∗ #i f CPU+Cuda ∗/

Lambda annotation with KOKKOS LAMBDA macro
Kokkos : : p a r a l l e l f o r (” Labe l ” , numbe rO f I t e r a t i on s ,

KOKKOS LAMBDA (cons t i n t 6 4 t i nd ex) { . . . }) ;

// Where Kokkos d e f i n e s :
#d e f i n e KOKKOS LAMBDA [=] /∗ #i f CPU−on l y ∗/
#d e f i n e KOKKOS LAMBDA [=] d e v i c e h o s t /∗ #i f CPU+Cuda ∗/

GATech Spring 2023 41/67

Memory spaces (0)

Memory space:
explicitly-manageable memory resource

(i.e., “place to put data”)

DRAM

NVRAM

On-Package
Memory

Network-on-Chip

Core Core

External Network
Interface

...

Core Core...

Acc.
On-Package

Memory

External Interconnect

Node

NUMA Domain

NUMA Domain

Accelerator

GATech Spring 2023 42/67

Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

I View<double***,MemorySpace> data(...);

I Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more

I Each execution space has a default memory space, which is
used if Space provided is actually an execution space

I If no Space is provided, the view’s data resides in the default
memory space of the default execution space.

// Equivalent:
View <double*> a("A",N);
View <double*,DefaultExecutionSpace :: memory_space > b("B",N);

GATech Spring 2023 42/67

Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

I View<double***,MemorySpace> data(...);

I Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more

I Each execution space has a default memory space, which is
used if Space provided is actually an execution space

I If no Space is provided, the view’s data resides in the default
memory space of the default execution space.

// Equivalent:
View <double*> a("A",N);
View <double*,DefaultExecutionSpace :: memory_space > b("B",N);

GATech Spring 2023 42/67

Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

I View<double***,MemorySpace> data(...);

I Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more

I Each execution space has a default memory space, which is
used if Space provided is actually an execution space

I If no Space is provided, the view’s data resides in the default
memory space of the default execution space.

// Equivalent:
View <double*> a("A",N);
View <double*,DefaultExecutionSpace :: memory_space > b("B",N);

GATech Spring 2023 42/67

Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

I View<double***,MemorySpace> data(...);

I Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more

I Each execution space has a default memory space, which is
used if Space provided is actually an execution space

I If no Space is provided, the view’s data resides in the default
memory space of the default execution space.

// Equivalent:
View <double*> a("A",N);
View <double*,DefaultExecutionSpace :: memory_space > b("B",N);

GATech Spring 2023 42/67

Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

I View<double***,MemorySpace> data(...);

I Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more

I Each execution space has a default memory space, which is
used if Space provided is actually an execution space

I If no Space is provided, the view’s data resides in the default
memory space of the default execution space.

// Equivalent:
View <double*> a("A",N);
View <double*,DefaultExecutionSpace :: memory_space > b("B",N);

GATech Spring 2023 42/67

Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

I View<double***,MemorySpace> data(...);

I Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more

I Each execution space has a default memory space, which is
used if Space provided is actually an execution space

I If no Space is provided, the view’s data resides in the default
memory space of the default execution space.

// Equivalent:
View <double*> a("A",N);
View <double*,DefaultExecutionSpace :: memory_space > b("B",N);

GATech Spring 2023 43/67

Memory spaces (2)

Example: HostSpace
View <double**, HostSpace> hostView (... constructor arguments ...);

Example: CudaSpace
View <double**, CudaSpace> view (... constructor arguments ...);

GATech Spring 2023 43/67

Memory spaces (2)

Example: HostSpace
View <double**, HostSpace> hostView (... constructor arguments ...);

Example: CudaSpace
View <double**, CudaSpace> view (... constructor arguments ...);

GATech Spring 2023 44/67

Execution and Memory spaces (3)

Example (redux): summing an array with the GPU

(failed) Attempt 1: View lives in CudaSpace

View <double*, CudaSpace> array("array", size);
for (int64_t i = 0; i < size; ++i) {

array(i) = ... read from file ...
}

double sum = 0;
Kokkos :: parallel_reduce("Label",

RangePolicy < Cuda >(0, size),
KOKKOS_LAMBDA (const int64_t index , double & valueToUpdate) {

valueToUpdate += array(index);
},
sum);

GATech Spring 2023 44/67

Execution and Memory spaces (3)

Example (redux): summing an array with the GPU

(failed) Attempt 1: View lives in CudaSpace

View <double*, CudaSpace> array("array", size);
for (int64_t i = 0; i < size; ++i) {

array(i) = ... read from file ...
}

double sum = 0;
Kokkos :: parallel_reduce("Label",

RangePolicy < Cuda >(0, size),
KOKKOS_LAMBDA (const int64_t index , double & valueToUpdate) {

valueToUpdate += array(index);
},
sum);

fault

GATech Spring 2023 45/67

Execution and Memory spaces (4)

Example (redux): summing an array with the GPU

(failed) Attempt 2: View lives in HostSpace

View <double*, HostSpace> array("array", size);
for (int64_t i = 0; i < size; ++i) {

array(i) = ... read from file ...
}

double sum = 0;
Kokkos :: parallel_reduce("Label",

RangePolicy < Cuda >(0, size),
KOKKOS_LAMBDA (const int64_t index , double & valueToUpdate) {

valueToUpdate += array(index);
},
sum);

What’s the solution?
I CudaUVMSpace

I CudaHostPinnedSpace (skipping)

I Mirroring

GATech Spring 2023 45/67

Execution and Memory spaces (4)

Example (redux): summing an array with the GPU

(failed) Attempt 2: View lives in HostSpace

View <double*, HostSpace> array("array", size);
for (int64_t i = 0; i < size; ++i) {

array(i) = ... read from file ...
}

double sum = 0;
Kokkos :: parallel_reduce("Label",

RangePolicy < Cuda >(0, size),
KOKKOS_LAMBDA (const int64_t index , double & valueToUpdate) {

valueToUpdate += array(index);
},
sum);

What’s the solution?
I CudaUVMSpace

I CudaHostPinnedSpace (skipping)

I Mirroring

illegal access

GATech Spring 2023 45/67

Execution and Memory spaces (4)

Example (redux): summing an array with the GPU

(failed) Attempt 2: View lives in HostSpace

View <double*, HostSpace> array("array", size);
for (int64_t i = 0; i < size; ++i) {

array(i) = ... read from file ...
}

double sum = 0;
Kokkos :: parallel_reduce("Label",

RangePolicy < Cuda >(0, size),
KOKKOS_LAMBDA (const int64_t index , double & valueToUpdate) {

valueToUpdate += array(index);
},
sum);

What’s the solution?
I CudaUVMSpace

I CudaHostPinnedSpace (skipping)

I Mirroring

illegal access

GATech Spring 2023 46/67

Views, Spaces, and Mirrors

Important concept: Mirrors

Mirrors are views of equivalent arrays residing in possibly di↵erent
memory spaces.

Mirroring schematic
using view_type = Kokkos ::View <double**, Space >;
view_type view (...);
view_type ::HostMirror hostView =

Kokkos : : c r e a t e m i r r o r v i ew (view);

GATech Spring 2023 46/67

Views, Spaces, and Mirrors

Important concept: Mirrors

Mirrors are views of equivalent arrays residing in possibly di↵erent
memory spaces.

Mirroring schematic
using view_type = Kokkos ::View <double**, Space >;
view_type view (...);
view_type ::HostMirror hostView =

Kokkos : : c r e a t e m i r r o r v i ew (view);

GATech Spring 2023 47/67

Mirroring pattern

1. Create a view’s array in some memory space.
using view_type = Kokkos ::View <double*, Space >;
view_type view (...);

2. Create hostView, a mirror of the view’s array residing in the
host memory space.

view_type ::HostMirror hostView =
Kokkos : : c r e a t e m i r r o r v i ew (view);

3. Populate hostView on the host (from file, etc.).

4. Deep copy hostView’s array to view’s array.
Kokkos :: deep copy (view, hostView);

5. Launch a kernel processing the view’s array.
Kokkos :: parallel_for("Label",

RangePolicy < Space >(0, size),
KOKKOS_LAMBDA (...) { use and change view });

6. If needed, deep copy the view’s updated array back to the
hostView’s array to write file, etc.

Kokkos :: deep copy (hostView , view);

GATech Spring 2023 47/67

Mirroring pattern

1. Create a view’s array in some memory space.
using view_type = Kokkos ::View <double*, Space >;
view_type view (...);

2. Create hostView, a mirror of the view’s array residing in the
host memory space.

view_type ::HostMirror hostView =
Kokkos : : c r e a t e m i r r o r v i ew (view);

3. Populate hostView on the host (from file, etc.).

4. Deep copy hostView’s array to view’s array.
Kokkos :: deep copy (view, hostView);

5. Launch a kernel processing the view’s array.
Kokkos :: parallel_for("Label",

RangePolicy < Space >(0, size),
KOKKOS_LAMBDA (...) { use and change view });

6. If needed, deep copy the view’s updated array back to the
hostView’s array to write file, etc.

Kokkos :: deep copy (hostView , view);

GATech Spring 2023 47/67

Mirroring pattern

1. Create a view’s array in some memory space.
using view_type = Kokkos ::View <double*, Space >;
view_type view (...);

2. Create hostView, a mirror of the view’s array residing in the
host memory space.

view_type ::HostMirror hostView =
Kokkos : : c r e a t e m i r r o r v i ew (view);

3. Populate hostView on the host (from file, etc.).

4. Deep copy hostView’s array to view’s array.
Kokkos :: deep copy (view, hostView);

5. Launch a kernel processing the view’s array.
Kokkos :: parallel_for("Label",

RangePolicy < Space >(0, size),
KOKKOS_LAMBDA (...) { use and change view });

6. If needed, deep copy the view’s updated array back to the
hostView’s array to write file, etc.

Kokkos :: deep copy (hostView , view);

GATech Spring 2023 47/67

Mirroring pattern

1. Create a view’s array in some memory space.
using view_type = Kokkos ::View <double*, Space >;
view_type view (...);

2. Create hostView, a mirror of the view’s array residing in the
host memory space.

view_type ::HostMirror hostView =
Kokkos : : c r e a t e m i r r o r v i ew (view);

3. Populate hostView on the host (from file, etc.).

4. Deep copy hostView’s array to view’s array.
Kokkos :: deep copy (view, hostView);

5. Launch a kernel processing the view’s array.
Kokkos :: parallel_for("Label",

RangePolicy < Space >(0, size),
KOKKOS_LAMBDA (...) { use and change view });

6. If needed, deep copy the view’s updated array back to the
hostView’s array to write file, etc.

Kokkos :: deep copy (hostView , view);

GATech Spring 2023 47/67

Mirroring pattern

1. Create a view’s array in some memory space.
using view_type = Kokkos ::View <double*, Space >;
view_type view (...);

2. Create hostView, a mirror of the view’s array residing in the
host memory space.

view_type ::HostMirror hostView =
Kokkos : : c r e a t e m i r r o r v i ew (view);

3. Populate hostView on the host (from file, etc.).

4. Deep copy hostView’s array to view’s array.
Kokkos :: deep copy (view, hostView);

5. Launch a kernel processing the view’s array.
Kokkos :: parallel_for("Label",

RangePolicy < Space >(0, size),
KOKKOS_LAMBDA (...) { use and change view });

6. If needed, deep copy the view’s updated array back to the
hostView’s array to write file, etc.

Kokkos :: deep copy (hostView , view);

GATech Spring 2023 47/67

Mirroring pattern

1. Create a view’s array in some memory space.
using view_type = Kokkos ::View <double*, Space >;
view_type view (...);

2. Create hostView, a mirror of the view’s array residing in the
host memory space.

view_type ::HostMirror hostView =
Kokkos : : c r e a t e m i r r o r v i ew (view);

3. Populate hostView on the host (from file, etc.).

4. Deep copy hostView’s array to view’s array.
Kokkos :: deep copy (view, hostView);

5. Launch a kernel processing the view’s array.
Kokkos :: parallel_for("Label",

RangePolicy < Space >(0, size),
KOKKOS_LAMBDA (...) { use and change view });

6. If needed, deep copy the view’s updated array back to the
hostView’s array to write file, etc.

Kokkos :: deep copy (hostView , view);

GATech Spring 2023 48/67

Mirrors of Views in HostSpace

What if the View is in HostSpace too? Does it make a copy?

using ViewType = Kokkos ::View <double*, Space >;
ViewType view("test", 10);
ViewType ::HostMirror hostView =

Kokkos : : c r e a t e m i r r o r v i ew (view);

I create mirror view allocates data only if the host process
cannot access view’s data, otherwise hostView references the
same data.

I create mirror always allocates data.

I Reminder: Kokkos never performs a hidden deep copy.

GATech Spring 2023 49/67

Exercise #3: Flat Parallelism on the GPU, Views and Host Mirrors

Details:

I Location: Exercises/03/Begin/

I Add HostMirror Views and deep copy

I Make sure you use the correct view in initialization and Kernel

Compile for CPU
make -j KOKKOS_DEVICES=OpenMP
Compile for GPU (we do not need UVM anymore)
make -j KOKKOS_DEVICES=Cuda
Run on GPU
./03 _Exercise.cuda -S 26

Things to try:

I Vary problem size and number of rows (-S ...; -N ...)

I Change number of repeats (-nrepeat ...)

I Compare behavior of CPU vs GPU

GATech Spring 2023 50/67

View and Spaces Section Summary

I Data is stored in Views that are “pointers” to
multi-dimensional arrays residing in memory spaces.

I Views abstract away platform-dependent allocation,
(automatic) deallocation, and access.

I Heterogeneous nodes have one or more memory spaces.

I Mirroring is used for performant access to views in host and
device memory.

I Heterogeneous nodes have one or more execution spaces.

I You control where parallel code is run by a template
parameter on the execution policy, or by compile-time
selection of the default execution space.

GATech Spring 2023 51/67

Managing memory access patterns
for performance portability

Learning objectives:

I How the View’s Layout parameter controls data layout.

I How memory access patterns result from Kokkos mapping
parallel work indices and layout of multidimensional array data

I Why memory access patterns and layouts have such a
performance impact (caching and coalescing).

I See a concrete example of the performance of various memory
configurations.

GATech Spring 2023 52/67

Example: inner product (0)

Kokkos :: parallel_reduce("Label",
RangePolicy <ExecutionSpace >(0, N),
KOKKOS_LAMBDA (const size_t row , double & valueToUpdate) {

double thisRowsSum = 0;
for (size_t entry = 0; entry < M; ++entry) {

thisRowsSum += A(row , entry) * x(entry);
}
valueToUpdate += y(row) * thisRowsSum;

}, result);

Driving question: How should A be laid out in memory?

GATech Spring 2023 52/67

Example: inner product (0)

Kokkos :: parallel_reduce("Label",
RangePolicy <ExecutionSpace >(0, N),
KOKKOS_LAMBDA (const size_t row , double & valueToUpdate) {

double thisRowsSum = 0;
for (size_t entry = 0; entry < M; ++entry) {

thisRowsSum += A(row , entry) * x(entry);
}
valueToUpdate += y(row) * thisRowsSum;

}, result);

Driving question: How should A be laid out in memory?

GATech Spring 2023 53/67

Example: inner product (1)

Layout is the mapping of multi-index to memory:

LayoutLeft

in 2D, “column-major”

LayoutRight

in 2D, “row-major”

GATech Spring 2023 54/67

Layout

Important concept: Layout

Every View has a multidimensional array Layout set at
compile-time.

View <double ***, Layout , Space > name (...);

I Most-common layouts are LayoutLeft and LayoutRight.
LayoutLeft: left-most index is stride 1.
LayoutRight: right-most index is stride 1.

I If no layout specified, default for that memory space is used.
LayoutLeft for CudaSpace, LayoutRight for HostSpace.

I Layouts are extensible: ⇡ 50 lines

I Advanced layouts: LayoutStride, LayoutTiled, ...

GATech Spring 2023 54/67

Layout

Important concept: Layout

Every View has a multidimensional array Layout set at
compile-time.

View <double ***, Layout , Space > name (...);

I Most-common layouts are LayoutLeft and LayoutRight.
LayoutLeft: left-most index is stride 1.
LayoutRight: right-most index is stride 1.

I If no layout specified, default for that memory space is used.
LayoutLeft for CudaSpace, LayoutRight for HostSpace.

I Layouts are extensible: ⇡ 50 lines

I Advanced layouts: LayoutStride, LayoutTiled, ...

GATech Spring 2023 55/67

Exercise #4: Inner Product, Flat Parallelism

Details:

I Location: Exercises/04/Begin/

I Replace ‘‘N’’ in parallel dispatch with RangePolicy<ExecSpace>

I Add MemSpace to all Views and Layout to A

I Experiment with the combinations of ExecSpace, Layout to view
performance

Things to try:

I Vary problem size and number of rows (-S ...; -N ...)

I Change number of repeats (-nrepeat ...)

I Compare behavior of CPU vs GPU

I Compare using UVM vs not using UVM on GPUs

I Check what happens if MemSpace and ExecSpace do not match.

GATech Spring 2023 56/67

Exercise #4: Inner Product, Flat Parallelism

 0

 100

 200

 300

 400

 500

 600

 1 10 100 1000 10000 100000 1x106 1x107 1x108 1x109

Ba
nd

w
id

th
 (G

B/
s)

Number of Rows (N)

<y|Ax> Exercise 04 (Layout) Fixed Size
KNL: Xeon Phi 68c HSW: Dual Xeon Haswell 2x16c Pascal60: Nvidia GPU

HSW Left
HSW Right
KNL Left
KNL Right
Pascal60 Left
Pascal60 Right

Why?

GATech Spring 2023 57/67

Caching and coalescing (0)

Thread independence:

operator ()(int index , double & valueToUpdate) const {
const double d = _data(index);
valueToUpdate += d;

}

Question: once a thread reads d, does it need to wait?

I CPU threads are independent.
I i.e., threads may execute at any rate.

I GPU threads execute synchronized.
I i.e., threads in groups can/must execute instructions together.

In particular, all threads in a group (warp or wavefront) must
finished their loads before any thread can move on.

So, how many cache lines must be fetched before threads can
move on?

GATech Spring 2023 57/67

Caching and coalescing (0)

Thread independence:

operator ()(int index , double & valueToUpdate) const {
const double d = _data(index);
valueToUpdate += d;

}

Question: once a thread reads d, does it need to wait?
I CPU threads are independent.

I i.e., threads may execute at any rate.

I GPU threads execute synchronized.
I i.e., threads in groups can/must execute instructions together.

In particular, all threads in a group (warp or wavefront) must
finished their loads before any thread can move on.

So, how many cache lines must be fetched before threads can
move on?

GATech Spring 2023 57/67

Caching and coalescing (0)

Thread independence:

operator ()(int index , double & valueToUpdate) const {
const double d = _data(index);
valueToUpdate += d;

}

Question: once a thread reads d, does it need to wait?
I CPU threads are independent.

I i.e., threads may execute at any rate.

I GPU threads execute synchronized.
I i.e., threads in groups can/must execute instructions together.

In particular, all threads in a group (warp or wavefront) must
finished their loads before any thread can move on.

So, how many cache lines must be fetched before threads can
move on?

GATech Spring 2023 57/67

Caching and coalescing (0)

Thread independence:

operator ()(int index , double & valueToUpdate) const {
const double d = _data(index);
valueToUpdate += d;

}

Question: once a thread reads d, does it need to wait?
I CPU threads are independent.

I i.e., threads may execute at any rate.

I GPU threads execute synchronized.
I i.e., threads in groups can/must execute instructions together.

In particular, all threads in a group (warp or wavefront) must
finished their loads before any thread can move on.

So, how many cache lines must be fetched before threads can
move on?

GATech Spring 2023 57/67

Caching and coalescing (0)

Thread independence:

operator ()(int index , double & valueToUpdate) const {
const double d = _data(index);
valueToUpdate += d;

}

Question: once a thread reads d, does it need to wait?
I CPU threads are independent.

I i.e., threads may execute at any rate.

I GPU threads execute synchronized.
I i.e., threads in groups can/must execute instructions together.

In particular, all threads in a group (warp or wavefront) must
finished their loads before any thread can move on.

So, how many cache lines must be fetched before threads can
move on?

GATech Spring 2023 58/67

Caching and coalescing (2)

Important point

For performance, accesses to views in HostSpace must be cached,
while access to views in CudaSpace must be coalesced.

Caching: if thread t’s current access is at position i,
thread t’s next access should be at position i+1.

Coalescing: if thread t’s current access is at position i,
thread t+1’s current access should be at position i+1.

Warning

Uncoalesced access on GPUs and non-cached loads on CPUs
greatly reduces performance (can be 10X)

GATech Spring 2023 58/67

Caching and coalescing (2)

Important point

For performance, accesses to views in HostSpace must be cached,
while access to views in CudaSpace must be coalesced.

Caching: if thread t’s current access is at position i,
thread t’s next access should be at position i+1.

Coalescing: if thread t’s current access is at position i,
thread t+1’s current access should be at position i+1.

Warning

Uncoalesced access on GPUs and non-cached loads on CPUs
greatly reduces performance (can be 10X)

GATech Spring 2023 59/67

Mapping indices to cores (2)

Rule of Thumb
Kokkos index mapping and default layouts provide e�cient access
if iteration indices correspond to the first index of array.

Example:

View <double ***, ...> view (...);
...
Kokkos :: parallel_for("Label", ... ,

KOKKOS_LAMBDA (int workIndex) {
...
view (..., ... , workIndex) = ...;
view (... , workIndex , ...) = ...;
view(workIndex , ... , ...) = ...;

});
...

GATech Spring 2023 60/67

Example: inner product (4)

Analysis: Kokkos architecture-dependent
View <double**, Execut ionSpace > A(N, M);
parallel_for(RangePolicy < Execut ionSpace >(0, N),

... thisRowsSum += A(j, i) * x(i);

(a) OpenMP (b) Cuda

I HostSpace: cached (good)

I CudaSpace: coalesced (good)

GATech Spring 2023 61/67

Example: inner product (5)

 0

 100

 200

 300

 400

 500

 600

 1 10 100 1000 10000 100000 1x106 1x107 1x108 1x109

Ba
nd

w
id

th
 (G

B/
s)

Number of Rows (N)

<y|Ax> Exercise 04 (Layout) Fixed Size
KNL: Xeon Phi 68c HSW: Dual Xeon Haswell 2x16c Pascal60: Nvidia GPU

HSW Left
HSW Right
KNL Left
KNL Right
Pascal60 Left
Pascal60 Right

coalesced

cached

uncoalesced

cached
uncached

GATech Spring 2023 62/67

Memory Access Pattern Summary

I Every View has a Layout set at compile-time through a
template parameter.

I LayoutRight and LayoutLeft are most common.

I Views in HostSpace default to LayoutRight and Views in
CudaSpace default to LayoutLeft.

I Layouts are extensible and flexible.

I For performance, memory access patterns must result in
caching on a CPU and coalescing on a GPU.

I Kokkos maps parallel work indices and multidimensional array
layout for performance portable memory access patterns.

I There is nothing in OpenMP, OpenACC, or OpenCL to manage
layouts.
) You’ll need multiple versions of code or pay the
performance penalty.

GATech Spring 2023 63/67

Exercise: CG-Solve HP

Exercise: Find x in b = A ⇤ x
Getting set up in your home directory:

mkdir Kokkos
cd Kokkos
git clone https:// github.com/kokkos/kokkos
git clone https:// github.com/kokkos/kokkos -tutorials

Find the exercise in the kokkos-tutorials/Exercises/cg-solve-hp
folder.

The Begin subdirectory contains the code. Only cg solve.cpp needs
modifications.

Look for EXERCISE comments to find places to modify. Note: this
contains the same Exercise components as the first cg-solve. So
you can just start with the solution of that and add the new
things! To make it clearer they are marked as EXERCISE-HP.

GATech Spring 2023 64/67

Exercise: CG Solve HP

Tasks:

I Use HostMirrors instead of Unified Memory for GPUs.

I Use a hierarchical parallelism SPMV.

Things to try:

I Compare with previous exercise on GPU with low iteration
count.

I Compare performance for small problems.

I Compare performance dependent on Layout of col idx and
values.

GATech Spring 2023 65/67

What we didn’t cover

This was a short introduction
Didn’t cover many things:

I Full BuildSystem integration.

I Non-Sum reductions / multiple reductions.

I Multidimensional loops.

I Advanced data structures.

I Subviews.

I Atomic operations and Scatter Contribute patterns.

I Team Scratch memory (GPU shared memory).

I SIMD vectorization.

I MPI and PGAS integration.

I Tools for Profiling, Debugging and Tuning.

I Math Kernels.

GATech Spring 2023 65/67

What we didn’t cover

This was a short introduction
Didn’t cover many things:

I Full BuildSystem integration.

I Non-Sum reductions / multiple reductions.

I Multidimensional loops.

I Advanced data structures.

I Subviews.

I Atomic operations and Scatter Contribute patterns.

I Team Scratch memory (GPU shared memory).

I SIMD vectorization.

I MPI and PGAS integration.

I Tools for Profiling, Debugging and Tuning.

I Math Kernels.

GATech Spring 2023 65/67

What we didn’t cover

This was a short introduction
Didn’t cover many things:

I Full BuildSystem integration.

I Non-Sum reductions / multiple reductions.

I Multidimensional loops.

I Advanced data structures.

I Subviews.

I Atomic operations and Scatter Contribute patterns.

I Team Scratch memory (GPU shared memory).

I SIMD vectorization.

I MPI and PGAS integration.

I Tools for Profiling, Debugging and Tuning.

I Math Kernels.

GATech Spring 2023 65/67

What we didn’t cover

This was a short introduction
Didn’t cover many things:

I Full BuildSystem integration.

I Non-Sum reductions / multiple reductions.

I Multidimensional loops.

I Advanced data structures.

I Subviews.

I Atomic operations and Scatter Contribute patterns.

I Team Scratch memory (GPU shared memory).

I SIMD vectorization.

I MPI and PGAS integration.

I Tools for Profiling, Debugging and Tuning.

I Math Kernels.

GATech Spring 2023 65/67

What we didn’t cover

This was a short introduction
Didn’t cover many things:

I Full BuildSystem integration.

I Non-Sum reductions / multiple reductions.

I Multidimensional loops.

I Advanced data structures.

I Subviews.

I Atomic operations and Scatter Contribute patterns.

I Team Scratch memory (GPU shared memory).

I SIMD vectorization.

I MPI and PGAS integration.

I Tools for Profiling, Debugging and Tuning.

I Math Kernels.

GATech Spring 2023 65/67

What we didn’t cover

This was a short introduction
Didn’t cover many things:

I Full BuildSystem integration.

I Non-Sum reductions / multiple reductions.

I Multidimensional loops.

I Advanced data structures.

I Subviews.

I Atomic operations and Scatter Contribute patterns.

I Team Scratch memory (GPU shared memory).

I SIMD vectorization.

I MPI and PGAS integration.

I Tools for Profiling, Debugging and Tuning.

I Math Kernels.

GATech Spring 2023 65/67

What we didn’t cover

This was a short introduction
Didn’t cover many things:

I Full BuildSystem integration.

I Non-Sum reductions / multiple reductions.

I Multidimensional loops.

I Advanced data structures.

I Subviews.

I Atomic operations and Scatter Contribute patterns.

I Team Scratch memory (GPU shared memory).

I SIMD vectorization.

I MPI and PGAS integration.

I Tools for Profiling, Debugging and Tuning.

I Math Kernels.

GATech Spring 2023 65/67

What we didn’t cover

This was a short introduction
Didn’t cover many things:

I Full BuildSystem integration.

I Non-Sum reductions / multiple reductions.

I Multidimensional loops.

I Advanced data structures.

I Subviews.

I Atomic operations and Scatter Contribute patterns.

I Team Scratch memory (GPU shared memory).

I SIMD vectorization.

I MPI and PGAS integration.

I Tools for Profiling, Debugging and Tuning.

I Math Kernels.

GATech Spring 2023 65/67

What we didn’t cover

This was a short introduction
Didn’t cover many things:

I Full BuildSystem integration.

I Non-Sum reductions / multiple reductions.

I Multidimensional loops.

I Advanced data structures.

I Subviews.

I Atomic operations and Scatter Contribute patterns.

I Team Scratch memory (GPU shared memory).

I SIMD vectorization.

I MPI and PGAS integration.

I Tools for Profiling, Debugging and Tuning.

I Math Kernels.

GATech Spring 2023 65/67

What we didn’t cover

This was a short introduction
Didn’t cover many things:

I Full BuildSystem integration.

I Non-Sum reductions / multiple reductions.

I Multidimensional loops.

I Advanced data structures.

I Subviews.

I Atomic operations and Scatter Contribute patterns.

I Team Scratch memory (GPU shared memory).

I SIMD vectorization.

I MPI and PGAS integration.

I Tools for Profiling, Debugging and Tuning.

I Math Kernels.

GATech Spring 2023 65/67

What we didn’t cover

This was a short introduction
Didn’t cover many things:

I Full BuildSystem integration.

I Non-Sum reductions / multiple reductions.

I Multidimensional loops.

I Advanced data structures.

I Subviews.

I Atomic operations and Scatter Contribute patterns.

I Team Scratch memory (GPU shared memory).

I SIMD vectorization.

I MPI and PGAS integration.

I Tools for Profiling, Debugging and Tuning.

I Math Kernels.

GATech Spring 2023 65/67

What we didn’t cover

This was a short introduction
Didn’t cover many things:

I Full BuildSystem integration.

I Non-Sum reductions / multiple reductions.

I Multidimensional loops.

I Advanced data structures.

I Subviews.

I Atomic operations and Scatter Contribute patterns.

I Team Scratch memory (GPU shared memory).

I SIMD vectorization.

I MPI and PGAS integration.

I Tools for Profiling, Debugging and Tuning.

I Math Kernels.

GATech Spring 2023 66/67

The Kokkos Lectures

The Kokkos Lectures
Watch the Kokkos Lectures for all of those and more in-depth
explanations or do them on your own.

I Module 1: Introduction, Building and Parallel Dispatch

I Module 2: Views and Spaces

I Module 3: Data Structures + MultiDimensional Loops

I Module 4: Hierarchical Parallelism

I Module 5: Tasking, Streams and SIMD

I Module 6: Internode: MPI and PGAS

I Module 7: Tools: Profiling, Tuning and Debugging

I Module 8: Kernels: Sparse and Dense Linear Algebra

https://kokkos.link/the-lectures

https://kokkos.link/the-lectures

GATech Spring 2023 67/67

Find More

Online Resources:
I https://github.com/kokkos:

I Primary Kokkos GitHub Organization

I https://kokkos.link/the-lectures:
I Slides, recording and Q&A for the Full Lectures

I https://github.com/kokkos/kokkos/wiki:
I Wiki including API reference

I https://kokkosteam.slack.com:
I Slack channel for Kokkos.
I Please join: fastest way to get your questions answered.
I Can whitelist domains, or invite individual people.

https://github.com/kokkos
https://kokkos.link/the-lectures
https://github.com/kokkos/kokkos/wiki
https://kokkosteam.slack.com

