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The Fundamentals

A Condensed Short Tutorial

This lecture covers fundamental concepts of Kokkos with
Hands-On Exercises as homework.
Slides: https://github.com/kokkos/kokkos-tutorials/
Intro-Short/KokkosTutorial_Short.pdf

For the full lectures, with more capabilities covered, and more
in-depth explanations visit:
https://github.com/kokkos/kokkos-tutorials/wiki/

Kokkos-Lecture-Series

https://github.com/kokkos/kokkos-tutorials/Intro-Short/KokkosTutorial_Short.pdf
https://github.com/kokkos/kokkos-tutorials/Intro-Short/KokkosTutorial_Short.pdf
https://github.com/kokkos/kokkos-tutorials/wiki/Kokkos-Lecture-Series
https://github.com/kokkos/kokkos-tutorials/wiki/Kokkos-Lecture-Series
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The HPC Hardware Landscape

(a) Initially not working. Now more robust for Fortran than C++, but getting better.
(b) Research e↵ort.
(c) OpenMP 5 by NVIDIA.
(d) OpenMP 5 by HPE.

(e) OpenMP 5 by Intel.
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Cost of Coding

Industry Estimate

A full time software engineer writes 10 lines of production code per
hour: 20k LOC/year.

I Typical HPC production app: 300k-600k lines
I Sandia alone maintains a few dozen

I Large Scientific Libraries:
I E3SM: 1,000k lines
I Trilinos: 4,000k lines

Conservative estimate: need to rewrite 10% of an app to switch
Programming Model

Software Cost Switching Vendors

Just switching Programming Models costs multiple person-years
per app!
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What is Kokkos?

I A C++ Programming Model for Performance Portability
I Implemented as a template library on top CUDA, HIP,

OpenMP, ...
I Aims to be descriptive not prescriptive
I Aligns with developments in the C++ standard

I Expanding solution for common needs of modern science and
engineering codes
I Math libraries based on Kokkos
I Tools for debugging, profiling and tuning
I Utilities for integration with Fortran and Python

I Is is an Open Source project with a growing community
I Maintained and developed at https://github.com/kokkos
I Hundreds of users at many large institutions

https://github.com/kokkos
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Kokkos at the Center
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The Kokkos EcoSystem
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The Kokkos Team

Kokkos Core: C. Trott, D. Lebrun-Grandié, D. Arndt, J. Bludau, J. Ciesko, V. Dang,
N. Ellingwood, R. Gayatri, D. Ibanez, V. Kale, N. Liber, P. Miller, N.
Morales, A. Powell, F. Rizzi, C. Skrzyński, B. Turcksin
former: H.C. Edwards, D. Labreche, G. Mackey, S. Bova, D. Sun-
derland, D.S. Hollman, J. Miles, J. Wilke, J. Madsen, D. Poliako↵, C.
Lewis, H. Finkel

Kokkos Kernels: S. Rajamanickam, L. Berger-Vergiat, V. Dang, N. Ellingwood, J.
Foucar, E. Harvey, B. Kelley, K. Kim, J. Loe, C. Pearson
former: J. Wilke, S. Acer
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Kokkos and the C++ Standard

Kokkos helps improve ISO C++

Ten current or former Kokkos team members are members of the

ISO C++ standard committee.
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Kokkos Users

Kokkos has a growing OpenSource Community

I 20 ECP projects list Kokkos as Critical Dependency
I 41 list C++ as critical
I 25 list Lapack as critical
I 21 list Fortran as critical

I Slack Channel: 900 members from 90+ institutions
I 15% Sandia Nat. Lab.
I 24% other US Labs
I 22% universities
I 39% other

I GitHub: 1.1k stars
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Welcome to Kokkos

Online Resources:
I https://github.com/kokkos:

I Primary Kokkos GitHub Organization

I https://github.com/kokkos/kokkos-tutorials/wiki/
Kokkos-Lecture-Series:
I Slides, recording and Q&A for the Full Lectures

I https://github.com/kokkos/kokkos/wiki:
I Wiki including API reference

I https://kokkosteam.slack.com:
I Slack channel for Kokkos.
I Please join: fastest way to get your questions answered.
I Can whitelist domains, or invite individual people.

https://github.com/kokkos
https://github.com/kokkos/kokkos-tutorials/wiki/Kokkos-Lecture-Series
https://github.com/kokkos/kokkos-tutorials/wiki/Kokkos-Lecture-Series
https://github.com/kokkos/kokkos/wiki
https://kokkosteam.slack.com
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Data parallel patterns

Learning objectives:

I How computational bodies are passed to the Kokkos runtime.

I How work is mapped to execution resources.

I The di↵erence between parallel for and
parallel reduce.

I Start parallelizing a simple example.
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Using Kokkos for data parallel patterns (0)

Data parallel patterns and work

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex) {
atomForces[atomIndex] = calculateForce (... data ...);

}

Kokkos maps work to execution resources

I each iteration of a computational body is a unit of work.

I an iteration index identifies a particular unit of work.

I an iteration range identifies a total amount of work.

Important concept: Work mapping

You give an iteration range and computational body (kernel)
to Kokkos, and Kokkos decides how to map that work to execution
resources.
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Using Kokkos for data parallel patterns (2)

How are computational bodies given to Kokkos?

As functors or function objects, a common pattern in C++.

Quick review, a functor is a function with data. Example:
struct ParallelFunctor {

...
void operator ()( a work assignment ) const {

/* ... computational body ... */
...

};
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Using Kokkos for data parallel patterns (3)

How is work assigned to functor operators?

A total amount of work items is given to a Kokkos pattern,
ParallelFunctor functor;
Kokkos :: parallel_for(numberOfIterations , functor );

and work items are assigned to functors one-by-one:
struct Functor {

void operator ()( const int64_t index) const {...}
}

Warning: concurrency and order

Concurrency and ordering of parallel iterations is not guaranteed
by the Kokkos runtime.
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Using Kokkos for data parallel patterns (6)

The complete picture (using functors):

1. Defining the functor (operator+data):

struct AtomForceFunctor {
ForceType _atomForces;
AtomDataType _atomData;

AtomForceFunctor(ForceType atomForces , AtomDataType data) :
_atomForces(atomForces), _atomData(data) {}

void operator ()( const int64_t atomIndex) const {
_atomForces[atomIndex] = calculateForce(_atomData );

}
}

2. Executing in parallel with Kokkos pattern:
AtomForceFunctor functor(atomForces , data);
Kokkos :: parallel_for(numberOfAtoms , functor );
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Using Kokkos for data parallel patterns (7)

Functors are tedious ) C++11 Lambdas are concise

atomForces already exists
data already exists
Kokkos :: parallel_for(numberOfAtoms ,

[=] (const int64_t atomIndex) {
atomForces[atomIndex] = calculateForce(data);

}
);

A lambda is not magic, it is the compiler auto-generating a
functor for you.

Warning: Lambda capture and C++ containers

For portability to GPU a lambda must capture by value [=].
Don’t capture containers (e.g., std::vector) by value because it will
copy the container’s entire contents.
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parallel for examples

How does this compare to OpenMP?

for (int64_t i = 0; i < N; ++i) {
/* loop body */

}

#pragma omp parallel for
for (int64_t i = 0; i < N; ++i) {

/* loop body */
}

parallel_for(N, [=] (const int64_t i) {
/* loop body */

});

Important concept

Simple Kokkos usage is no more conceptually di�cult than
OpenMP, the annotations just go in di↵erent places.
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Scalar integration (0)

Riemann-sum-style numerical integration:

y =

Z upper

lower
function(x) dx

Wikipedia
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double totalIntegral = 0;
for (int64_t i = 0; i < numberOfIntervals; ++i) {

const double x =
lower + (i/numberOfIntervals) * (upper - lower );
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}
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Scalar integration (1)

An (incorrect) attempt:

double totalIntegral = 0;
Kokkos :: parallel_for(numberOfIntervals ,

[=] (const int64_t index) {
const double x =

lower + (index/numberOfIntervals) * (upper - lower );
totalIntegral += function(x);},

);
totalIntegral *= dx;

First problem: compiler error; cannot increment totalIntegral
(lambdas capture by value and are treated as const!)
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Scalar integration (2)

An (incorrect) solution to the (incorrect) attempt:

double totalIntegral = 0;
double * totalIntegralPointer = &totalIntegral;
Kokkos :: parallel_for(numberOfIntervals ,

[=] (const int64_t index) {
const double x =

lower + (index/numberOfIntervals) * (upper - lower );
*totalIntegralPointer += function(x);},

);
totalIntegral *= dx;

Second problem: race condition

step thread 0 thread 1
0 load
1 increment load
2 write increment
3 write
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Scalar integration (3)

Root problem: we’re using the wrong pattern, for instead of
reduction

Important concept: Reduction

Reductions combine the results contributed by parallel work.

How would we do this with OpenMP?
double finalReducedValue = 0;
#pragma omp parallel for reduction(+: finalReducedValue)
for (int64_t i = 0; i < N; ++i) {

finalReducedValue += ...
}

How will we do this with Kokkos?
double finalReducedValue = 0;
parallel_reduce(N, functor , finalReducedValue );
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Scalar integration (4)

Example: Scalar integration

double totalIntegral = 0;
#pragma omp parallel for reduction(+: totalIntegral)
for (int64_t i = 0; i < numberOfIntervals; ++i) {

totalIntegral += function (...);
}

double totalIntegral = 0;
parallel_reduce(numberOfIntervals ,

[=] (const int64_t i, double & valueToUpdate) {
valueToUpdate += function (...);

},
totalIntegral );

I The operator takes two arguments: a work index and a value
to update.

I The second argument is a thread-private value that is
managed by Kokkos; it is not the final reduced value.
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Naming your kernels

Always name your kernels!

Giving unique names to each kernel is immensely helpful for
debugging and profiling. You will regret it if you don’t!

I Non-nested parallel patterns can take an optional string
argument.

I The label doesn’t need to be unique, but it is helpful.

I Anything convertible to ”std::string”

I Used by profiling and debugging tools (see Profiling Tutorial)

Example:
double totalIntegral = 0;
parallel_reduce("Reduction",numberOfIntervals ,

[=] (const int64_t i, double & valueToUpdate) {
valueToUpdate += function (...);

},
totalIntegral );
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Recurring Exercise: Inner Product

Exercise: Inner product < y ,A ⇤ x >

Details:

I y is Nx1, A is NxM, x is Mx1

I We’ll use this exercise throughout the tutorial
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Exercise #1: include, initialize, finalize Kokkos

The first step in using Kokkos is to include, initialize, and finalize:

#include <Kokkos_Core.hpp >
int main(int argc , char* argv []) {

/* ... do any necessary setup (e.g., initialize MPI) ... */
Kokkos :: initialize(argc , argv);
{
/* ... do computations ... */
}
Kokkos :: finalize ();
return 0;

}

(Optional) Command-line arguments or environment variables:

--kokkos-num-threads=INT or
KOKKOS NUM THREADS

total number of threads

--kokkos-device-id=INT or
KOKKOS DEVICE ID

device (GPU) ID to use
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Exercise #1: Inner Product, Flat Parallelism on the CPU

Exercise: Inner product < y ,A ⇤ x >

Details:

I Location: Exercises/01/Begin/

I Look for comments labeled with “EXERCISE”

I Need to include, initialize, and finalize Kokkos library

I Parallelize loops with parallel for or parallel reduce

I Use lambdas instead of functors for computational bodies.

I For now, this will only use the CPU.
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Exercise #1: logistics

Compiling for CPU
# gcc using OpenMP (default) and Serial back -ends ,
# (optional) change non -default arch with KOKKOS_ARCH

make -j KOKKOS_DEVICES=OpenMP ,Serial KOKKOS_ARCH =...

Running on CPU with OpenMP back-end

# Set OpenMP affinity
export OMP_NUM_THREADS =8
export OMP_PROC_BIND=spread OMP_PLACES=threads
# Print example command line options:
./01 _Exercise.host -h
# Run with defaults on CPU
./01 _Exercise.host
# Run larger problem
./01 _Exercise.host -S 26

Things to try:

I Vary problem size with cline arg -S s

I Vary number of rows with cline arg -N n

I Num rows = 2n, num cols = 2m, total size = 2s == 2n+m
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Exercise #1 results
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Section Summary

I Simple usage is similar to OpenMP, advanced features are
also straightforward

I Three common data-parallel patterns are parallel for,
parallel reduce, and parallel scan.

I A parallel computation is characterized by its pattern, policy,
and body.

I User provides computational bodies as functors or lambdas
which handle a single work item.
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Views

Learning objectives:

I Motivation behind the View abstraction.

I Key View concepts and template parameters.

I The View life cycle.
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View motivation

Example: running daxpy on the GPU:

double * x = new double[N]; // also y
parallel_for("DAXPY",N, [=] (const int64_t i) {

y[i] = a * x[i] + y[i];
});

struct Functor {
double *_x , *_y, a;
void operator ()( const int64_t i) const {

_y[i] = _a * _x[i] + _y[i];
}

};

Problem: x and y reside in CPU memory.

Solution: We need a way of storing data (multidimensional arrays)
which can be communicated to an accelerator (GPU).

) Views
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Views (0)

View abstraction

I A lightweight C++ class with a pointer to array data and a
little meta-data,

I that is templated on the data type (and other things).

High-level example of Views for daxpy using lambda:

View <double*, ...> x(...) , y(...);
... populate x, y...

parallel_for("DAXPY",N, [=] (const int64_t i) {
// Views x and y are captured by value (shallow copy)
y(i) = a * x(i) + y(i);

});

Important point

Views are like pointers, so copy them in your functors.
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Views (1)

View overview:

I Multi-dimensional array of 0 or more dimensions
scalar (0), vector (1), matrix (2), etc.

I Number of dimensions (rank) is fixed at compile-time.

I Arrays are rectangular, not ragged.

I Sizes of dimensions set at compile-time or runtime.
e.g., 2x20, 50x50, etc.

I Access elements via ”(...)” operator.

Example:

View <double ***> data("label", N0 , N1, N2); //3 run, 0 compile
View <double **[N2]> data("label", N0 , N1); //2 run, 1 compile
View <double *[N1][N2]> data("label", N0); //1 run, 2 compile
View <double[N0][N1][N2]> data("label"); //0 run, 3 compile
// Access
data(i,j,k) = 5.3;

Note: runtime-sized dimensions must come first.
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I Number of dimensions (rank) is fixed at compile-time.

I Arrays are rectangular, not ragged.

I Sizes of dimensions set at compile-time or runtime.
e.g., 2x20, 50x50, etc.

I Access elements via ”(...)” operator.
Example:

View <double ***> data("label", N0 , N1, N2); //3 run, 0 compile
View <double **[N2]> data("label", N0, N1); //2 run, 1 compile
View <double *[N1][N2]> data("label", N0); //1 run, 2 compile
View <double[N0][N1][N2]> data("label"); //0 run, 3 compile
// Access
data(i,j,k) = 5.3;

Note: runtime-sized dimensions must come first.
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Views (2)

View life cycle:

I Allocations only happen when explicitly specified.
i.e., there are no hidden allocations.

I Copy construction and assignment are shallow (like pointers).
so, you pass Views by value, not by reference

I Reference counting is used for automatic deallocation.

I They behave like std::shared ptr

Example:
View <double *[5]> a("a", N), b("b", K);
a = b;
View <double**> c(b);
a(0,2) = 1;
b(0,2) = 2;
c(0,2) = 3;
print_value( a(0,2) );

What gets printed?
3.0
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Views (3)

View Properties:
I Accessing a View’s sizes is done via its extent(dim)

function.
I Static extents can additionally be accessed via

static extent(dim).

I You can retrieve a raw pointer via its data() function.

I The label can be accessed via label().

Example:

View <double *[5]> a("A",N0);
assert(a.extent (0) == N0);
assert(a.extent (1) == 5);
static_assert(a.static_extent (1) == 5);
assert(a.data() != nullptr );
assert(a.label () == "A");
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Exercise #2: Inner Product, Flat Parallelism on the CPU, with Views

I Location: Exercises/02/Begin/

I Assignment: Change data storage from arrays to Views.

I Compile and run on CPU, and then on GPU with UVM

make -j KOKKOS_DEVICES=OpenMP # CPU -only using OpenMP
make -j KOKKOS_DEVICES=Cuda # GPU - note UVM in Makefile
# Run exercise
./02 _Exercise.host -S 26
./02 _Exercise.cuda -S 26
# Note the warnings , set appropriate environment variables

I Vary problem size: -S #

I Vary number of rows: -N #

I Vary repeats: -nrepeat #

I Compare performance of CPU vs GPU
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Execution spaces (1)

Execution Space
a homogeneous set of cores and an execution mechanism

(i.e., “place to run code”)

DRAM

NVRAM

On-Package
Memory

Network-on-Chip

Core Core

External Network
Interface

...

Core Core...

Acc.
On-Package

Memory

External Interconnect

Node

NUMA Domain

NUMA Domain

Accelerator

Execution spaces: Serial, Threads, OpenMP, Cuda, HIP, ...
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Execution spaces (3)

Changing the parallel execution space:

parallel_for("Label",
RangePolicy < Execut ionSpace >(0, numberOfIntervals),
[=] (const int64_t i) {

/* ... body ... */
});

parallel_for("Label",
numberOfIntervals , // => RangePolicy <>(0, numberOfIntervals)
[=] (const int64_t i) {

/* ... body ... */
});

Requirements for enabling execution spaces:
I Kokkos must be compiled with the execution spaces enabled.

I Execution spaces must be initialized (and finalized).

I Functions must be marked with a macro for non-CPU spaces.

I Lambdas must be marked with a macro for non-CPU spaces.

D
ef
au

lt
C
u
st
o
m
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Execution spaces (5)

Kokkos function and lambda portability annotation macros:

Function annotation with KOKKOS INLINE FUNCTION macro
s t r u c t P a r a l l e l F u n c t o r {

KOKKOS INLINE FUNCTION
doub l e h e l p e r F un c t i o n ( con s t i n t 6 4 t s ) con s t { . . .}
KOKKOS INLINE FUNCTION
vo i d op e r a t o r ( ) ( con s t i n t 6 4 t i nd ex ) con s t {

h e l p e r F un c t i o n ( i nd ex ) ;
}

}
// Where kokkos d e f i n e s :
#d e f i n e KOKKOS INLINE FUNCTION i n l i n e /∗ #i f CPU−on l y ∗/
#d e f i n e KOKKOS INLINE FUNCTION i n l i n e d e v i c e h o s t /∗ #i f CPU+Cuda ∗/

Lambda annotation with KOKKOS LAMBDA macro
Kokkos : : p a r a l l e l f o r ( ” Labe l ” , numbe rO f I t e r a t i on s ,

KOKKOS LAMBDA ( cons t i n t 6 4 t i nd ex ) { . . . } ) ;

// Where Kokkos d e f i n e s :
#d e f i n e KOKKOS LAMBDA [=] /∗ #i f CPU−on l y ∗/
#d e f i n e KOKKOS LAMBDA [=] d e v i c e h o s t /∗ #i f CPU+Cuda ∗/
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Memory spaces (0)

Memory space:
explicitly-manageable memory resource

(i.e., “place to put data”)

DRAM

NVRAM

On-Package
Memory

Network-on-Chip

Core Core

External Network
Interface

...

Core Core...

Acc.
On-Package

Memory

External Interconnect

Node

NUMA Domain

NUMA Domain

Accelerator
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Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

I View<double***,MemorySpace> data(...);

I Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more

I Each execution space has a default memory space, which is
used if Space provided is actually an execution space

I If no Space is provided, the view’s data resides in the default
memory space of the default execution space.

// Equivalent:
View <double*> a("A",N);
View <double*,DefaultExecutionSpace :: memory_space > b("B",N);
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Memory spaces (2)

Example: HostSpace
View <double**, HostSpace> hostView (... constructor arguments ...);

Example: CudaSpace
View <double**, CudaSpace> view (... constructor arguments ...);
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Execution and Memory spaces (3)

Example (redux): summing an array with the GPU

(failed) Attempt 1: View lives in CudaSpace

View <double*, CudaSpace> array("array", size);
for (int64_t i = 0; i < size; ++i) {

array(i) = ... read from file ...
}

double sum = 0;
Kokkos :: parallel_reduce("Label",

RangePolicy < Cuda >(0, size),
KOKKOS_LAMBDA (const int64_t index , double & valueToUpdate) {

valueToUpdate += array(index );
},
sum);
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Execution and Memory spaces (4)

Example (redux): summing an array with the GPU

(failed) Attempt 2: View lives in HostSpace

View <double*, HostSpace> array("array", size);
for (int64_t i = 0; i < size; ++i) {

array(i) = ... read from file ...
}

double sum = 0;
Kokkos :: parallel_reduce("Label",

RangePolicy < Cuda >(0, size),
KOKKOS_LAMBDA (const int64_t index , double & valueToUpdate) {

valueToUpdate += array(index );
},
sum);

What’s the solution?
I CudaUVMSpace

I CudaHostPinnedSpace (skipping)

I Mirroring
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Views, Spaces, and Mirrors

Important concept: Mirrors

Mirrors are views of equivalent arrays residing in possibly di↵erent
memory spaces.

Mirroring schematic
using view_type = Kokkos ::View <double**, Space >;
view_type view (...);
view_type ::HostMirror hostView =

Kokkos : : c r e a t e m i r r o r v i ew (view);
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Mirroring pattern

1. Create a view’s array in some memory space.
using view_type = Kokkos ::View <double*, Space >;
view_type view (...);

2. Create hostView, a mirror of the view’s array residing in the
host memory space.

view_type ::HostMirror hostView =
Kokkos : : c r e a t e m i r r o r v i ew (view);

3. Populate hostView on the host (from file, etc.).

4. Deep copy hostView’s array to view’s array.
Kokkos :: deep copy (view, hostView );

5. Launch a kernel processing the view’s array.
Kokkos :: parallel_for("Label",

RangePolicy < Space >(0, size),
KOKKOS_LAMBDA (...) { use and change view });

6. If needed, deep copy the view’s updated array back to the
hostView’s array to write file, etc.

Kokkos :: deep copy (hostView , view);
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Mirrors of Views in HostSpace

What if the View is in HostSpace too? Does it make a copy?

using ViewType = Kokkos ::View <double*, Space >;
ViewType view("test", 10);
ViewType ::HostMirror hostView =

Kokkos : : c r e a t e m i r r o r v i ew (view);

I create mirror view allocates data only if the host process
cannot access view’s data, otherwise hostView references the
same data.

I create mirror always allocates data.

I Reminder: Kokkos never performs a hidden deep copy.
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Exercise #3: Flat Parallelism on the GPU, Views and Host Mirrors

Details:

I Location: Exercises/03/Begin/

I Add HostMirror Views and deep copy

I Make sure you use the correct view in initialization and Kernel

# Compile for CPU
make -j KOKKOS_DEVICES=OpenMP
# Compile for GPU (we do not need UVM anymore)
make -j KOKKOS_DEVICES=Cuda
# Run on GPU
./03 _Exercise.cuda -S 26

Things to try:

I Vary problem size and number of rows (-S ...; -N ...)

I Change number of repeats (-nrepeat ...)

I Compare behavior of CPU vs GPU
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View and Spaces Section Summary

I Data is stored in Views that are “pointers” to
multi-dimensional arrays residing in memory spaces.

I Views abstract away platform-dependent allocation,
(automatic) deallocation, and access.

I Heterogeneous nodes have one or more memory spaces.

I Mirroring is used for performant access to views in host and
device memory.

I Heterogeneous nodes have one or more execution spaces.

I You control where parallel code is run by a template
parameter on the execution policy, or by compile-time
selection of the default execution space.
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Managing memory access patterns
for performance portability

Learning objectives:

I How the View’s Layout parameter controls data layout.

I How memory access patterns result from Kokkos mapping
parallel work indices and layout of multidimensional array data

I Why memory access patterns and layouts have such a
performance impact (caching and coalescing).

I See a concrete example of the performance of various memory
configurations.
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Example: inner product (0)

Kokkos :: parallel_reduce("Label",
RangePolicy <ExecutionSpace >(0, N),
KOKKOS_LAMBDA (const size_t row , double & valueToUpdate) {

double thisRowsSum = 0;
for (size_t entry = 0; entry < M; ++entry) {

thisRowsSum += A(row , entry) * x(entry );
}
valueToUpdate += y(row) * thisRowsSum;

}, result );

Driving question: How should A be laid out in memory?
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Example: inner product (1)

Layout is the mapping of multi-index to memory:

LayoutLeft

in 2D, “column-major”

LayoutRight

in 2D, “row-major”
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Layout

Important concept: Layout

Every View has a multidimensional array Layout set at
compile-time.

View <double ***, Layout , Space > name (...);

I Most-common layouts are LayoutLeft and LayoutRight.
LayoutLeft: left-most index is stride 1.
LayoutRight: right-most index is stride 1.

I If no layout specified, default for that memory space is used.
LayoutLeft for CudaSpace, LayoutRight for HostSpace.

I Layouts are extensible: ⇡ 50 lines

I Advanced layouts: LayoutStride, LayoutTiled, ...
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Exercise #4: Inner Product, Flat Parallelism

Details:

I Location: Exercises/04/Begin/

I Replace ‘‘N’’ in parallel dispatch with RangePolicy<ExecSpace>

I Add MemSpace to all Views and Layout to A

I Experiment with the combinations of ExecSpace, Layout to view
performance

Things to try:

I Vary problem size and number of rows (-S ...; -N ...)

I Change number of repeats (-nrepeat ...)

I Compare behavior of CPU vs GPU

I Compare using UVM vs not using UVM on GPUs

I Check what happens if MemSpace and ExecSpace do not match.
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Exercise #4: Inner Product, Flat Parallelism
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Caching and coalescing (0)

Thread independence:

operator ()( int index , double & valueToUpdate) const {
const double d = _data(index );
valueToUpdate += d;

}

Question: once a thread reads d, does it need to wait?

I CPU threads are independent.
I i.e., threads may execute at any rate.

I GPU threads execute synchronized.
I i.e., threads in groups can/must execute instructions together.

In particular, all threads in a group (warp or wavefront) must
finished their loads before any thread can move on.

So, how many cache lines must be fetched before threads can
move on?
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Caching and coalescing (2)

Important point

For performance, accesses to views in HostSpace must be cached,
while access to views in CudaSpace must be coalesced.

Caching: if thread t’s current access is at position i,
thread t’s next access should be at position i+1.

Coalescing: if thread t’s current access is at position i,
thread t+1’s current access should be at position i+1.

Warning

Uncoalesced access on GPUs and non-cached loads on CPUs
greatly reduces performance (can be 10X)
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Mapping indices to cores (2)

Rule of Thumb
Kokkos index mapping and default layouts provide e�cient access
if iteration indices correspond to the first index of array.

Example:

View <double ***, ...> view (...);
...
Kokkos :: parallel_for("Label", ... ,

KOKKOS_LAMBDA (int workIndex) {
...
view (..., ... , workIndex ) = ...;
view (... , workIndex , ... ) = ...;
view(workIndex , ... , ... ) = ...;

});
...
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Example: inner product (4)

Analysis: Kokkos architecture-dependent
View <double**, Execut ionSpace > A(N, M);
parallel_for(RangePolicy < Execut ionSpace >(0, N),

... thisRowsSum += A(j, i) * x(i);

(a) OpenMP (b) Cuda

I HostSpace: cached (good)

I CudaSpace: coalesced (good)
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Example: inner product (5)
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Memory Access Pattern Summary

I Every View has a Layout set at compile-time through a
template parameter.

I LayoutRight and LayoutLeft are most common.

I Views in HostSpace default to LayoutRight and Views in
CudaSpace default to LayoutLeft.

I Layouts are extensible and flexible.

I For performance, memory access patterns must result in
caching on a CPU and coalescing on a GPU.

I Kokkos maps parallel work indices and multidimensional array
layout for performance portable memory access patterns.

I There is nothing in OpenMP, OpenACC, or OpenCL to manage
layouts.
) You’ll need multiple versions of code or pay the
performance penalty.
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Exercise: CG-Solve HP

Exercise: Find x in b = A ⇤ x
Getting set up in your home directory:

mkdir Kokkos
cd Kokkos
git clone https:// github.com/kokkos/kokkos
git clone https:// github.com/kokkos/kokkos -tutorials

Find the exercise in the kokkos-tutorials/Exercises/cg-solve-hp
folder.

The Begin subdirectory contains the code. Only cg solve.cpp needs
modifications.

Look for EXERCISE comments to find places to modify. Note: this
contains the same Exercise components as the first cg-solve. So
you can just start with the solution of that and add the new
things! To make it clearer they are marked as EXERCISE-HP.
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Exercise: CG Solve HP

Tasks:

I Use HostMirrors instead of Unified Memory for GPUs.

I Use a hierarchical parallelism SPMV.

Things to try:

I Compare with previous exercise on GPU with low iteration
count.

I Compare performance for small problems.

I Compare performance dependent on Layout of col idx and
values.
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What we didn’t cover

This was a short introduction
Didn’t cover many things:

I Full BuildSystem integration.

I Non-Sum reductions / multiple reductions.

I Multidimensional loops.

I Advanced data structures.

I Subviews.

I Atomic operations and Scatter Contribute patterns.

I Team Scratch memory (GPU shared memory).

I SIMD vectorization.

I MPI and PGAS integration.

I Tools for Profiling, Debugging and Tuning.

I Math Kernels.
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The Kokkos Lectures

The Kokkos Lectures
Watch the Kokkos Lectures for all of those and more in-depth
explanations or do them on your own.

I Module 1: Introduction, Building and Parallel Dispatch

I Module 2: Views and Spaces

I Module 3: Data Structures + MultiDimensional Loops

I Module 4: Hierarchical Parallelism

I Module 5: Tasking, Streams and SIMD

I Module 6: Internode: MPI and PGAS

I Module 7: Tools: Profiling, Tuning and Debugging

I Module 8: Kernels: Sparse and Dense Linear Algebra

https://kokkos.link/the-lectures

https://kokkos.link/the-lectures
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Find More

Online Resources:
I https://github.com/kokkos:

I Primary Kokkos GitHub Organization

I https://kokkos.link/the-lectures:
I Slides, recording and Q&A for the Full Lectures

I https://github.com/kokkos/kokkos/wiki:
I Wiki including API reference

I https://kokkosteam.slack.com:
I Slack channel for Kokkos.
I Please join: fastest way to get your questions answered.
I Can whitelist domains, or invite individual people.

https://github.com/kokkos
https://kokkos.link/the-lectures
https://github.com/kokkos/kokkos/wiki
https://kokkosteam.slack.com

