Friedrich-Alexander-Universitat
FAU E/A\ l! | Erlangen-Nirnberg
(LIY//an\ L J

Machine Architecture Tools (LIKWID, hwloc, perftools)

CSE 6240 — High Performance Parallel Computing

Thomas Gruber

NHR@FAU

mailto:Thomas.gruber@fau.de

Who am [?

= Thomas Gruber né Roehl

= Apprenticeship as IT-Specialist at
Regional Computing Center Erlangen (RRZE)

= M.Sc in Computer Science from RWTH Aachen
= Starting with LIKWID development in 2013 at RRZE

Other projects:
= ClusterCockpit: Cluster-wide job-specific monitoring

= MachineState: System settings and runtime environment recorder

CSE 6240 - High Performance Parallel Computing — Thomas Gruber (NHR@FAU)

https://github.com/ClusterCockpit
https://github.com/RRZE-HPC/MachineState

The NHR Alliance

Provide nationwide HPC resources for researchers of German universities

NHR_ JFAU

BERLIN @

Powerful and reliable HPC infrastructure
; @PADERBORN

2 Expert user support and user training
i g NHR@FAU fields of expertise within NHR
Quanz | - Atomistic Simulations

@ DARMSTADT [

ERLANGENG) = Performance Engineering & Tools

Long-term funding: 2021 — 2030
(Federal govt. & State of Bavaria; FAU)

CSE 6240 - High Performance Parallel Computing — Thomas Gruber (NHR@FAU)

https://www.nhr-verein.de/

Motivation

= System architecture more and more complex
= Not only from the hardware perspective (more subsystems)
= But also from software POV (task to resource affinity)

o] 38 =§= 2| | DRAéNlIB Dmgvll3 ™ 38 =§= 2| e HOW tO programmatha”y get I'e|atI0n Of
L], i components?
50 GB/s § § § § 50 GB/s
\ 4 e} o o Ire] \ 4
3l {|sal 8 losl Lo sl 8 |o:|| |8 ¢ Portable? Multi-arch? Multi-OS?
) @ ol IR * « Discover relations between devices

50 GBls |Interaction with other libraries

50 GB/s
50 GB/s

\4 Y
R RN Llssll lsell.] ¢ Control compute & memory affinity?

6.0 GB/s Read
\ 's Rea
2.1 GB/s Write

(src: CSE6240 - Performance Modeling - 2/7/23)

CSE 6240 - High Performance Parallel Computing — Thomas Gruber (NHR@FAU)

Friedrich-Alexander-Universitat
FAU ‘E/A\ l! | Erlangen-Nirnberg
(LIY//an\ L J

Portable Hardware Locality (hwloc)

Discover hardware resources in parallel architectures

Portable Hardware Locality (hwloc)

= OpenMPI sub-project but used in various libraries/tools/applications
= Consists of hwloc (local topology) and netloc (network topology)

= Mainly developed by the TADaaM team at Inria (Bordeaux, France)

= Features:
= portable abstraction (architectures, OS, co-processors, ...)
= hierarchical topology
« CPU and memory binding
= C/C++-API
= Active development (new topological quirks added quickly) 0

CSE 6240 - High Performance Parallel Computing — Thomas Gruber (NHR@FAU)

https://www.open-mpi.org/projects/hwloc/

Example topologies

AMD EPYC 9654 ~ Intel Xeon Platinum 8360Y

CSE 6240 - High Performance Parallel Computing — Thomas Gruber (NHR@FAU)

Hierarchical topology

* Hwloc organizes the system topology in an imperfect tree

hwloc topology t topo = NULL; Default filters do not
err = hwloc_ topology init(&topo) ; detect some devices,
// error check e.g. PCl devices

err = hwloc topology set type filter(topo, .., ..);

// error check)/‘ Control device discovery
err = hwloc topology set flags(topo, ..);

// error check depth O0: 1 Machine (type #0)
err = hwloc topology load(topo) ; depth 1: 2 Package (type #1)
depth 3: 4 GroupO (type #12)
[...] depth 4: 72 L2Cache (type #5)
hwloc_topology_destroy (topo) ; depth 5: 72 LldCache (type #4)
depth 6: 72 LliCache (type #9)
: depth 7: 72 Core (type #2)
= System topology updates require P) g
l _ _ Special depth -3: 4 NUMANode (type #13)
reloading of tree, no under-the-hood o et 2. 10 Brtdee (e
updates of the tree Special depth -5: 9 PCIDev (type #15)
Special depth -6: 271 OSDev (type #16)

CSE 6240 - High Performance Parallel Computing — Thomas Gruber (NHR@FAU)

Portable abstraction

= Each topological entity is an object (hwloc obj t)

hwloc obj t obj = NULL, next = NULL;

count = hwloc _get nbobj by type(topo, <type>);

obj = hwloc get obj by type(topo, <type>, <logical idx>);
next = hwloc get next obj by type(topo, <type>, obj);

count = hwloc get nbobj by depth(topo, <depth>) ;
obj = hwloc get obj by depth(topo, <depth>, <logical idx>);
next = hwloc get next obj by depth(topo, < depth >, obj);

= |[nformation per object:
= |ID given by the operating system (os_index)
= Object type (Lx cache, ...) maybe with subtype (unified, instruction or data cache)
= Relation to parent(s), sibling(s) and cousin(s) objects
= Type-specific information (key-value pairs)

CSE 6240 - High Performance Parallel Computing — Thomas Gruber (NHR@FAU) 9

Friedrich-Alexander-Universitat
FAU E/A\ l! | Erlangen-Nirnberg
(LIY//an\ L J

Bridging the gap between hardware and software

Hardware performance counters

(Short) History of hardware counters

= Already available in ‘old’ architectures but proprietary
= Reverse-engineered for Intel Pentium in 1994!1]

* [ntroduced (publicly) by AMD with AMD K6 (1997)

= Nowadays available in all systems

= Logic that runs besides demand computation
= Great observability
= (Almost) No overhead
= Originally used for verification by chip vendors

[1] “Pentium Secrets: Undocumented features of the Intel Pentium can give you all the information you need to optimize Pentium code”
Terje Mathisen, eByte Magazine, July 1994, Page 191

CSE 6240 - High Performance Parallel Computing — Thomas Gruber (NHR@FAU) 11

https://vintageapple.org/byte/pdf/199407_Byte_Magazine_Vol_19-07_PC_Telephony.pdf

History

/‘ Counts from LIKWID

Arcitecture_______| Num PNCs

Intel Pentium

Intel Pentium MMX
AMD K8

Intel Core2

Intel Nehalem
Intel Nehalem EX

IBM POWERS8 / POWER9
AMD Interlagos (Kabini)

Intel Sandybridge
Intel Sandybridge EP

Intel Skylake
Intel Skylake SP

ARM Neoverse N1
AMD Zen3
Intel Icelake SP

N

4
5

16
105

6/48
12

31
102

37
337

6
21
408

30
163
423

498
2623

996 / 818
428

422
788

444
2061

122
303
3033

MSR, RDPMC
MSR, RDPMC
MSR, RDPMC
MSR, RDPMC

MCR
MSR, RDPMC

MSR, RDPMC
MSR, RDPMC, PCI

MSR, RDPMC
MSR, RDPMC, PCI

LDR
MSR, RDPMC
MSR, RDPMC, PCI, MMIO

CSE 6240 - High Performance Parallel Computing — Thomas Gruber (NHR@FAU)

12

Issues?

= Due to verification history
= (partly) very specific events
= Event names are written from hardware architect POV

= Generational differences
= Same event (name) might count differently
= Important events missing (Intel Haswell does not support counting FP ops)
= New access modes increase space for errors

= Security
« MSRs (x86) are used not only for hardware counting
= Access commonly restricted to kernel space
= Monitoring might reveal user code (behavior)

CSE 6240 - High Performance Parallel Computing — Thomas Gruber (NHR@FAU)

13

Friedrich-Alexander-Universitat
FAU E/A\ l! | Erlangen-Nirnberg
(LIY//an\ L J

perf event and perf

Focus on perf event

For perf see CSE6240 — Profiling - 2/14/23

Short overview

= History
= Prior to perf event only kernel patches ([1], [2]) existed
« perf event introduced with Linux 2.6.31 (2009)

= Linux kernel interface for performance event monitoring
= Hardware performance counters
= Kernel internal structure & event monitoring

= Single system call perf event open for setup

static long perf event open(struct perf event attr *config,
pid t pid, int cpu, int group fd,
unsigned long flags) ({

return syscall(_ NR perf event open, config, pid, cpu, group fd, flags);

}
= Access control through /proc/sys/kernel/perf event paranoid

CSE 6240 - High Performance Parallel Computing — Thomas Gruber (NHR@FAU)

15

https://perfmon2.sourceforge.net/
https://user.it.uu.se/~mikpe/linux/perfctr/
https://www.man7.org/linux/man-pages/man2/perf_event_open.2.html

Configuration ()

= Version dependent configuration structure struct perf event attr
= size field always sizeof (struct perf event attr)

= Counting modes
= User-controlled start/stop/reset
= Instruction/time/... based sampling (Intel PEBS, AMD IBS, ...)

= Result access (file descriptors, grouped FDs, MMAP, ring buffer)

= Unit configuration
= Each unit exports a sysfs folder: /sys/bus/event source/devices/<unit>
= Each unit has a type

= Config struct contains one or more config field(s)
How to populate these fields, check unit's format folder

= Other flags in the struct: counting scope (kernel, userspace, VMs, ...), inherit to
child processes, start disabled, addresses to allocated space, ...

CSE 6240 - High Performance Parallel Computing — Thomas Gruber (NHR@FAU) 16

Configuration (llI)

= Configuration left:
= Which process(es) should be counted
= Which part of the system (CPUs) should be measured

__PID__| _CPU
0

-1 Calling process/thread on any CPU
>=0 Calling process/thread when running on specified CPU
>0 -1 Specified PID on any CPU
>0 >=0 Specified PID on specified CPU
-1 >=0 All processes/thread on specified CPU

perf event paranoid <= 1or CAP_PERFMONICAP_SYS_ADMIN

CSE 6240 - High Performance Parallel Computing — Thomas Gruber (NHR@FAU)

17

Usage

Use first FD of unit(!) event as
= foreach event: group_f£d to reduce reads

= struct perf event attr config = create config(event);
- fd = perf event open(config, <pid>, <cpu>, -1, 0);
" foreach fd: ioctl(fd, PERF EVENT IOC RESET, O0);
" foreach fd: ioctl(fd, PERF EVENT IOC ENABLE, O0);
" <Code region>
" foreach fd: ioctl(fd, PERF EVENT IOC DISABLE, 0);

= foreach fd OR foreach group fd as £fd:
- - \ .
- read (fd, &result, sizeof(long long)) ; With group_£d, read all

- add (total result, result); ?;%lép S:?dwggjmzzgilf

config, read multiple 1ong
long’s

CSE 6240 - High Performance Parallel Computing — Thomas Gruber (NHR@FAU) 18

Usage

= Different access modes require more configuration
= User allocation for ring buffer with kernel for samples — Interrupt when full
= Group FDs for less overhead when accessing (group per unit)

= |f events exceed physical counters, multiplexing is applied
Get enabled vs. running time ratio with different read format

= Some units are per CPU, others per socket or other topological entity
(check cpumask in sysfs)

= Only few events pre-configured

CSE 6240 - High Performance Parallel Computing — Thomas Gruber (NHR@FAU)

19

Pros & Cons

= Pro
= Vendor support — Available on almost all systems
= Get infos from the kernel (eBPF, events, ...)
“Simple” API (one system call, some IOCTLs, common SysProg)
All required configuration information published via sysfs
Usage control via procfs and/or capabilities
Process/thread support (limit counting to PIDs)
= Con
= Almost similar between archs but vendors partly do their own stuff
= Overhead not really known and hard to measure
= Scalability issues (PID x CPUs x Users X ...)
= Intransparent event scheduling (did it multiplex?)
= Insufficient error handling and almost non-existent documentation

CSE 6240 - High Performance Parallel Computing — Thomas Gruber (NHR@FAU)

20

Friedrich-Alexander-Universitat
FAU E/A\ l! | Erlangen-Nirnberg
(LIY//an\ L J

LIKWID

NHR@FAU:

https://hpc.fau.de/research/tools/likwid/

LIKWID tool suite

= LIKWID tool suite:
Like | Knew What I'm Doing

Support for x86, ARM and PPC and Nvidia GPUs
(upcoming AMD GPUs, Intel GPUs and recent CPUs)

Works with standard kernel interfaces
C/C++ library with command-line tools
= Lua interface (builtin)

= Julia interface

= Python interface

LIKWID

Repo: https://github.com/RRZE-HPC/likwid
Docs: https://github.com/RRZE-HPC/likwid/wiki
Zenodo: https://doi.org/10.5281/zenodo.4275676

DOI: 10.1109/ICPPW.2010.38

CSE 6240 - High Performance Parallel Computing — Thomas Gruber (NHR@FAU) 22

https://juliaperf.github.io/LIKWID.jl/dev/
https://github.com/RRZE-HPC/pylikwid
https://github.com/RRZE-HPC/likwid
https://github.com/RRZE-HPC/likwid/wiki
https://doi.org/10.5281/zenodo.4275676
http://doi.ieeecomputersociety.org/10.1109/ICPPW.2010.38

LIKWID tools

likwid-topology - Print thread and cache topology

likwid-pin - Pin threaded application without touching code

likwid-perfctr - Measure performance counters

likwid-powermeter - Measure energy consumption

likwid-bench - Microbenchmarking tool and environment

likwid-mpirun - MPIl wrapper to 1ikwid-pin and likwid-perfctr
likwid-features - Manipulation of hardware feature flags

likwid-setFrequencies - Manipulation of various frequencies

CSE 6240 - High Performance Parallel Computing — Thomas Gruber (NHR@FAU)

23

likwid-topology

= Get information about the current system from different sources:
hwloc, procfs, sysfs and CPUID (x86)

» Hardware thread topology
How many sockets? HW Thread — socket mapping? SMT?

= Cache topology
How many cache levels? Sizes? Inclusive/exclusive? Cacheline size?

= NUMA topology
How is the memory distributed? HW Thread — NUMA node mapping?

= Nvidia GPU topology (if built with Nvidia support)
How many GPU? How much GPU memory?
GPU — NUMA node mapping?

CSE 6240 - High Performance Parallel Computing — Thomas Gruber (NHR@FAU) 24

Output of likwid-topology

$ likwid-topology

CPU name: Intel (R) Xeon(R) Platinum 8360Y CPU @ 2.40GHz

CPU type: Intel Icelake SP processor

CPU stepping: 6
hkhkhkkkkkhkkhkhkhkhkhkhkkkhkkhkhkhkhkhkhkhkhkkkhkkhkkhkhkhkhkhkhhkkkkkhkhkhkhkhkhkhkkkkkhkhkhkhkhhkhkkkhkkkhkkhkhkhkhkhkkkkkkkhkhkhkhkhkkkkkkkkk

Hardware Thread Topology

hkhkkkhkhkkkkhkhkkkkhkhkkkkkhkkhkkkkhkkhkkkhkhkhkkkkhkhkkhkkkhkhkkkkhkhkkkkhkhkkkkhkhkkhkkkhkhkkhkkkhkhkkhkkkkhkkkkkkkkxkx

Sockets: 2

Cores per socket: 36

Threads per core: 1

HWThread Thread Core Die Socket Available

0 0 0 0 0 *

1 0 1 0 0 * All physical

2 0 2 0 0 * processor IDs

[..]

69 0 69 0 1 *

70 0 70 0 1 *

71 0 71 0 1 *

Socket O: (012345678910 11 12 13 14 15 .. 23 24 25 26 27 28 29 30 31 32 33 34 35)
Socket 1: (36 37 38 39 40 41 42 43 44 45 46 47 48 .. 59 60 61 62 63 64 65 66 67 68 69 70 71)

CSE 6240 - High Performance Parallel Computing — Thomas Gruber (NHR@FAU)

Output of likwid-topology

hkhkkkhkhkkkkhkhkkkkhkhkkhkkkkhkkhkkkkhkkhkkkkhkkkkkhkhkkkkhkhkkkkhkhkkkkhkhkkkkhkhkkhkkkhkhkkhkkkkhkkhkkkkhkhkkkkkkkkx

Cache Topology
hhkhkkkkkhkkhkhkhkhkhkhkkkhkkhkkhkhkhkhkhkhkhkkkhkkhkhkhkhkhkhkhhkkkkhkkhkhkhkhkhkhkhkkkkhkkhkhkhkhkhhkhkkkhkkkhkkhkhkhkhkhkkkkkhkkhkkhkhkhkhkhkkkkkkkkk

Level: 1

Size: 48 kB

Cache groups: (0) (1) (2) (3) (4) (5) ..(64) (65) (66) (67) (68) (69) (70)
Level: 2

Size: 1.25 MB

Cache groups: (0) (1) (2) (3) (4) (5) ..(64) (65) (66) (67) (68) (69) (70)
Level: 3

Size: 54 MB

Type: Unified cache 7]

Associativity: 12

Number of sets: 73728 i Additional cache

Cache line size: 64 info with -c option

Cache type: Non Inclusive

Shared by threads: 36 B

Cache groups: (012345678910 11 12 13 14 15 .. 23 24 25 26 27 28 29 30 31 32 33 34 35)

(36 37 38 39 40 41 42 43 44 45 46 47 48 .. 59 60 61 62 63 64 65 66 67 68 69 70 71)

06@0

(71)

(71)

CSE 6240 - High Performance Parallel Computing — Thomas Gruber (NHR@FAU)

26

Output of likwid-topology

hhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhhkhkkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhhkhhkhkhkhkhkhkhkhhkhhkhkkhkhkhkhkhkhhkhkhkkhkkhkhkhkhhkhkhkkxk

NUMA Topology

hhkkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhhkhhkhkkhkhkhkhkhkhkhkhhkhkkhkhkhkhkhkhhkhhkhkhkhkhkhkhkhhkhhkhkkhkhkhkhkhkhhkhkkhkkhkhkhkhkhkhhkhkhkkxk

NUMA domains:

Domain:
Processors:
Distances:

Free memory:

Total memory:

Domain:
Processors:
Distances:

Free memory:

Total memory:

Domain:
Processors:
Distances:

Free memory:

Total memory:

Domain:
Processors:
Distances:

Free memory:

Total memory:

(012345678910 11 12 13 14 15 16 17)
10 11 20 20
119059 MB
128553 MB

(18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35)
11 10 20 20

128196 MB

129020 MB

(36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53)
20 20 10 11

128033 MB

128978 MB

(54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71)
20 20 11 10

128719 MB

129017 MB

Output similar to
numactl --hardware

Sockets:
2
Threads per core:
1

Cluster on Die (CoD) mode
and SMT disabled!

06@0

CSE 6240 - High Performance Parallel Computing — Thomas Gruber (NHR@FAU)

27

Bandwidth [GB/s]

There are several reasons for caring about affinity:

600 T

‘OpenMP-parallel
A (:)=A(:)+s*B (1)

400

I

No pinning

300

I

5]
(=]
<
I
|
{
—
L
K
1

100

I

Mean-max-min
| 20 runs per pointI

\

0() 10 20 30 40

cores

Eliminating performance variation

Making use of architectural features

Avoiding resource contention

PIPIPIPIP“PIPIPIPIPIP“P |l PIPlIPIPIPIPIPIPIPIPIPIP I
_ L2 . L2 "
| | ! |
l Memory Interface] | | Memory Interface]
(Memory] 1 Memory |

\ _‘A
PIPIPIPIPIPIPIPIPIP“PIP PIPIPlIPIPIPIPIPIPIPIPIP
- L2 L2

|

|
l Memory Interface]

[Memory .]

|
l Memory Interface]

[. Memoryl .]

800~

600 —

500~

Bandwidth [GB/s]
oS
=
[

W

(=3

<
I

200~

100 —

ol ' Compact” pinning
(fill first socket first)

0

cores

50

CSE 6240 - High Performance Parallel Computing — Thomas Gruber (NHR@FAU)

28

Interlude: Why the weird scaling behavior?

ISomp parallel do schedule(static)
do 1 = 1,N

»
T T

©'5
2 .l a(i) = b(i) + s * c(1)
g 3 \‘ implicit barrier
E’ 2 Socket O Socket 1
1 A A
& N\)

|
048 12 16 20 24 28 32 36
cores

= Every thread has the same workload

time

= Performance of left socket is saturated

Waiting @ barrier

= Barrier enforces waiting of “speeders™ at sync point

<

= Average performance of each “right” core == average v
/77224722

performance of each “left” core - linear scaling Barrier

CSE 6240 - High Performance Parallel Computing — Thomas Gruber (NHR@FAU)

likwid-pin

= Pins processes and threads to specific cores without touching code
= Directly supports pthreads, gcc OpenMP, Intel OpenMP

= Based on combination of wrapper tool together with overloaded pthread library
—> binary must be dynamically linked!

= Supports logical core numbering within topological entities (thread domains)

= Simple usage with physical (kernel) core IDs:
$ likwid-pin -c 0-3,4,6 ./myApp parameters
$ OMP NUM THREADS=4 likwid-pin -c 0-9 ./myApp params

No overwriting of
existing env variables

CSE 6240 - High Performance Parallel Computing — Thomas Gruber (NHR@FAU) 30

LIKWID terminology: Thread group syntax

= The OS numbers all processors (hardware threads) on a node
= The numbering is enforced at boot time by the BIOS

= LIKWID introduces thread domains consisting of hardware threads sharing a
topological entity (e.g. socket or shared cache)

L . . . Physical HW threads first!
= Athread domain is defined by a single character + index ysica reads firs

[R g
= Example for likwid-pin: L oA S A A
$ likwid-pin -c S0:0-3 ./a.out | +------ LIRS LIRS + oo + 1

= Thread group expressions may be chained with @:
$ likwid-pin -c S0:0-2@S1:0-2 ./a.out

CSE 6240 - High Performance Parallel Computing — Thomas Gruber (NHR@FAU) 31

vailable thread domains/unit prefixes (LIKWID 5.2)

Memory I Memory Memory I Memory ou te r- I eve I
cache group

S socket

Tl (eIl]I Tl o] I] =] T[]]I T T[]z I~ Ir
PlPlPlP plp|P|P PlP PP PP PP
sizn iz | [sz | [tzwiz || ez sizniz | [sz vz iz | sz | s | s stz [stz | [srawz | sz
16 MiB L3 8 8 16 MiB L3 16 MiB L3 8 E} 16 MiB L3
£78m st e18am st €189 e1am9L
s [T e e Tas [[[enas [[[Tz EWE‘
o |[ovvee || o e[v v orves| |[arvves[avrivee | [orr e o [erves [o v | foriva
dlld]d]ld dfld]ld]d [dlldlld]la
PPy Y P A (e[e L] (T el e LT
TR TFIFEIEEIEE TTEEEEEE
P Pl P][P|P PllP]IP]P
= 22 10 32 o0 | 325 v [32 o 22010 210 | [32 oo 32 oo
:Imm i:uzk\z o :‘mzku {:mzm_z stz ||[sz,

8 8 16 MiB L3 16 MiB L3 8
L
Wl 81 £1am sk €18 91

T [z [zas

N n Od e dm‘mdm d

d
anAAnRa R
L

M ccNUMA

—_— —
T (=)= I T[T LEd| | T[T g
Pl P| P[P P PP|P|P P|PIP|P domaln
16 MiB L3 8 16 MiB L3 8 16 MiB L3
£719m 81 £1am s BRETTER
dld|d|d dld|d]d djd|d]d d
LT T e e nnnn RN JU |

P TlTiiiirlTHiirlT
22 110 [32¢ 1o [o 326 o
stz 2 [srzx iz || srze iz [sz

16 MiB L3

T[]l]fr]T

®lplp|P

]
16 MiB L3

€791
TS| zas [aas]
orvze | [araze | [o e

dijidjidjid

nnnn nnnn

8 €189 SE

D die/chip

Jowap Joway JOWa wap
Kows Aows) Aows) Aowa

CSE 6240 - High Performance Parallel Computing — Thomas Gruber (NHR@FAU)

Example: 1ikwid-pin with Intel OpenMP

%,
Y,
Running the STREAM benchmark with 1ikwid-pin: S

$ likwid-pin -c S0:0-3 ./stream

Double precision appears to have 16 digits of accuracy
Assuming 8 bytes per DOUBLE PRECISION word

Array size 20000000

Offset 32

The total memory requirement is 457 MB

You are running each test 10 times

Main PID always
pinned

Some threads might need

The *best* time for each test is used

EXCLUDING the first and last iterations

[pthread wrapper]

[pthread wrapper] MAIN -> 0 .

[pthread wrapper] PIN MASK: 0->1 1->2 2->3 to be Sklpped

[pthread wrapper] SKIP MASK: 0x0 | (eg runtime threads)
threadid 47308666070912 -> core 1 - OK :}

threadid 47308670273536 -> core 2 - OK

threadid 47308674476160 -> core 3 - OK Pin all spawned

[... rest of STREAM output omitted ...] threads in turn

CSE 6240 - High Performance Parallel Computing — Thomas Gruber (NHR@FAU)

33

likwid-perfctr

= Commandline application for hardware performance monitoring

= Operating modes
= Wrapper - coarse profile of whole application
= Stethoscope - system monitoring
= Timeline - time-based sampling
= MarkerAPI - code instrumentation
= Different backends
= direct access with root privileges
= accessDaemon mode with privilege-escalation daemon /{ Build configuration
- perf event with reduced feature set in other LIKWID tools
= Almost all hardware events supported

= Pre-configured derived metric groups (performance groups)

CSE 6240 - High Performance Parallel Computing — Thomas Gruber (NHR@FAU)

34

likwid-perfctr

= \WWhere should be measured?

= —¢ <intlist>: measure on these HW threads
= =C <intlist>: measure AND pin on/to these HW threads

= \What should be measured? —e for list of all events
- -g <eventlist> <event>:<counter>(:opts)

= —-g <group>-\§§~§‘\§§§§‘
= Select operating mode

= —m: activate MarkerAP| mode
= —t <time>: Timeline mode

= =S <time>: Stethoscope mode

= likwid-perfctr -C 0,1 -g

—a for list of all groups

CLOCK: Clock frequency of cores

FLOPS DP: Double Precision MFlops/s
FLOPS SP: Single Precision MFlops/s
MEM: Main memory bandwidth in MBytes/s

L2 <application> <args>

CSE 6240 - High Performance Parallel Computing — Thomas Gruber (NHR@FAU)

35

likwid-perfctr events

CPU name:Intel (R) Core(TM) i5-8259U CPU @ 2.30GHz

Counters and events are

CPU type:Intel Kabylake processor
CPU clock: 2.30 GHz

$ likwid-perfctr -e
This architecture has 33 counters.

architecture-dependent

Counter & event option
description in LIKWID wiki

Counter tags(name, type<, options>):

FIXCO, Fixed counters, KERNEL|ANYTHREAD —’—”_,,———””’—”—”—”—
FIXCl, Fixed counters, KERNEL|ANYTHREAD

FIXC2, Fixed counters, KERNEL|ANYTHREAD

O%o

PMCO, Core-local general purpose counters, EDGEDETECT |THRESHOLD | INVERT |KERNEL | ANYTHREAD | IN TRANSACTION
PMC1, Core-local general purpose counters, EDGEDETECT |THRESHOLD | INVERT |KERNEL | ANYTHREAD |IN TRANSACTION

[..]

This architecture has 445 events.

Event tags (tag, id, umask, counters<, options>):
INSTR RETIRED ANY, 0x0, 0x0, FIXCO

CPU_CLK UNHALTED CORE, 0x0, 0x0, FIXCl

Can only be measured on FIXCx

CPU_CLK_UNHALTED_REF, 0x0, 0x0, FIXC2 / Can be measured on any PMC counter
ICACHE 16B_IFDATA STALL, 0x80, Ox4, PMC}

ICACHE 64B_IFTAG HIT, 0x83, 0xl, PMC

CSE 6240 - High Performance Parallel Computing — Thomas Gruber (NHR@FAU)

36

https://github.com/RRZE-HPC/likwid/wiki/DescOptions

likwid-perfctr performance groups

$ likwid-perfctr -a

Group name Description

UOPS UOPs execution info

L2 L2 cache bandwidth in MBytes/s
CYCLE_STALLS Cycle Activities (Stalls)
TLB_INSTR Ll Instruction TLB miss rate/ratio
L3CACHE L3 cache miss rate/ratio

ICACHE Instruction cache miss rate/ratio

[..]

RSE Seminar — Using the LIKWID tool suite — Thomas Gruber (NHR@FAU)

37

likwid-perfctr in wrapper mode

9%,
$ likwid-perfctr -C S1:0-3 —-g L2 ./a.out MO
CPU name: Intel (R) Xeon CPU E5-2695 v3 @ 2.30GHz [..]
<<<< PROGRAM OUTPUT >>>> Resolves to HW threads 14,15,16 and 17
Group 1: L2 / \ \ \
T it $o—m— - e $ommm = —- +o—mm - $ommm - +
| Event | Counter | Core 14 | Core 15 | Core 16 | Core 17 | Fixed-purpose events
e ———— e e —— e p—— e —— e —— - .
| INSTR RETIRED ANY | FIXCO | 1298031144 | 1965945005 | 1854182290 | 1862521357 always measured if
| CPU_CLK UNHALTED CORE | FIXCl | 2353698512 | 2894134935 | 2894645261 | 2895023739 pOSSIble
| L1D REPLACEMENT | PMCO | 212900444 | 200544877 | 200389272 | 200387671]
| L2_TRANS_L1D WB | PMC1 | 112464863 | 99931184 | 99982371 | 99976697 Configured events
| ICACHE MISSES | PMC2 | 21265 | 26233 | 12646 | 12363 (.2 group)
Fm—m - +-— - +-——— - e +-——— - +m—— - +
[.. statistics output omitted ..]
i e L tm—mm - Fommm - o $ommm - +
| Metric | Core 14 | Core 15 | Core 16 | Core 17 |
i $m—mm - $ommm - e Fommm - +
Runtime (RDTSC) [s]	1.1314	1.1314	1.1314	1.1314
Runtime unhalted [s]	1.0234	1.2583	1.2586	1.2587
Clock [MHz]	2631.6699	2626.4367	2626.0579	2626.0468
CPI	1.8133	1.4721	1.5611	1.5544
L2D load bandwidth [MBytes/s]	12042.7388	11343.8446	11335.0428	11334.9523
L2D load data volume [GBytes]	13.6256	12.8349	12.8249	12.8248
L2D evict bandwidth [MBytes/s]	6361.5883	5652.6192	5655.5146	5655.1937
L2D evict data volume [GBytes]	7.1978	6.3956	6.3989	6.3985
L2 bandwidth [MBytes/s]	18405.5299	16997.9477	16991.2728	16990.8453
L2 data volume [GBytes]	20.8247	19.2321	19.2246	19.2241
o tm—mm - $ommm - tm—mm - Fommm - +

CSE 6240 - High Performance Parallel Computing — Thomas Gruber (NHR@FAU) 38

likwid-perfctr with MarkerAPI

= The MarkerAPI can restrict measurements to code regions
= The API only reads counters, configuration performed by 1likwid-perfctr

= Multiple named regions support, accumulation over multiple calls

= Inclusive and overlapping regions allowed See LIKWID wiki for
#include <likwid-marker.h> i Before LIKWID 5 use likwid.h Fortran90 example
LIKWID MARKER INIT; // must be called from serial region

LIKWID MARKER REGISTER (“Compute”) // register for each thread

LIKWID MARKER START (“Compute”) ; // start markers for each thread

<code>
LIKWID MARKER STOP (“Compute”) ; // stop markers for each thread
LIKWID MARKER CLOSE; // must be called from serial region

"= $CC -DLIKWID PERFMON -I/path/to/likwid-marker.h -L/path/to/liblikwid .. -1llikwid
» likwid-perfctr -C <intlist> -g <eventlist|group> -m ./a.out

Pinning required!

CSE 6240 - High Performance Parallel Computing — Thomas Gruber (NHR@FAU) 39

https://github.com/RRZE-HPC/likwid/wiki/TutorialMarkerF90

Usage information

= Topo. entity specific units are only counted by one HW thread per entity

$ likwid-perfctr -C S0:0-1@S1:0-1 -g MEM ./a,out

e et e e T Fommm - Fommm - +
| Metric | HWThread 0 | HWThread 1 | HWThread 36 | HWThread 37 |
e et e e T Fommm - Fommm - +
| Memory bandwidth [MBytes/s] | 328.1941 | 0 | 775.7109 | 0 |
| Memory data volume [GBytes] | 0.0014 | 0 | 0.0033 | 0 |
e et e Fomm - Fommm - Fommm - +

= Statistics table may contain non-useful data (uncore units)

= No knowledge about PIDs — count anything done by the HW thread(s)

(except perf_event backend)

* Pinning recommended!

= Might disturb execution
: = Too short code regions
= Counter access is overhead! T T e

CSE 6240 - High Performance Parallel Computing — Thomas Gruber (NHR@FAU) 40

Motivation for Microbenchmarking as a tool

= |solate small kernels to:
= Separate influences
= Determine specific machine capabilities (light speed)
= Gain experience about software/hardware interaction
= Determine programming model overhead

= Possibilities:
= Readymade benchmark collections (epcc OpenMP, IMB)
« STREAM benchmark for memory bandwidth

= Implement own benchmarks (difficult and error prone)

= likwid-bench tool: Offers collection of benchmarks and framework for rapid
development of assembly code kernels

CSE 6240 - High Performance Parallel Computing — Thomas Gruber (NHR@FAU) 2022-11-03 41

The parallel vector triad benchmark - A “swiss army knife” for microbenchmarking

double striad seq(double* a, double* b, double* c,
double* d, int N, int iter) {
double S, E;
S = getTimeStamp() ;
for (int j = 0; j < iter; j++) { _ _ _
$pragma vector aligned— Requwed_ to get optimal code with
for (int i = 0; i < N; i++) { Intel compiler icc! New icx unclear

a[i] = b[i] + d[i] * c[i];

All timing facilities have a distinct
resolution. Repeat main loop.

}

if (a[N/2] > 2000) printf("Ai = %£f\n",a[N-1]);

E = getTimeStamp () ; f pan;cjs lcorrlp:Iers)
return E-S; rom aoing clever

} stuff

* Report performance for different N, choose iter so that accurate time
measurement is possible

» This kernel is limited by data transfer performance for all memory
levels on all architectures, ever!

CSE 6240 - High Performance Parallel Computing — Thomas Gruber (NHR@FAU) 2022-11-03 42

A better way — use a microbenchmarking tool

Microbenchmarking in high-level language is often difficult
Solution: assembly-based microbenchmarking framework
= €.9., likwid-bench

$ likwid-bench -t triad avx512 fma -W S0:28kB:
benchmark type

topological entity (see likwid-pin)
working set

= LIKWID MarkerAPI integrated

likwid-perfctr -C <MASK> -g <GROUP> -m likwid-bench ..

= Other recommendation: nanobench

CSE 6240 - High Performance Parallel Computing — Thomas Gruber (NHR@FAU) 2022-11-03

43

https://github.com/andreas-abel/nanoBench

Example: 1ikwid-bench

$ likwid-bench -t triad avx512 fma -W N:2GB:2:1:2

Allocate: Process running on hwthread 0 (Domain N) - Vector length 62499968/499999744 Offset O Alignment 512
Initialization: Each thread in domain initializes its own stream chunks

LIKWID MICRO BENCHMARK

Test: triad avx512_ fma

Using 1 work groups
Using 2 threads

Group: 0 Thread 0 Global Thread 0 running on hwthread 0 - Vector length 31249984 Offset 0
Group: 0 Thread 1 Global Thread 1 running on hwthread 1 - Vector length 31249984 Offset 31249984

Cycles: 2977073662
CPU Clock: 2593891829
Cycle Clock: 2593891829
Time: 1.147725e+00 sec
Iterations: 32
Iterations per thread: 16

Inner loop executions: 976562
Size (Byte): 1999998976
Size per thread: 999999488
Number of Flops: 1999998976
MFlops/s: 1742.58
Data volume (Byte): 31999983616
MByte/s: 27881.24
Cycles per update: 2.977075
Cycles per cacheline: 23.816601
Loads per update: 3

Stores per update: 1

Load bytes per element: 24

Store bytes per elem.: 8
Load/store ratio: 3.00
Instructions: 593749712
UOPs: 812499584

CSE 6240 - High Performance Parallel Computing — Thomas Gruber (NHR@FAU)

2022-11-03

44

Friedrich-Alexander-Universitat
N H R FAU ‘E/A Erlangen-Nirnberg
(LIY//an\

Questions?

